RSS-Feed abonnieren
DOI: 10.1055/s-0029-1220071
A Short and Efficient Route from myo- to neo-Inositol
Publikationsverlauf
Publikationsdatum:
26. Mai 2010 (online)

Abstract
An efficient route from myo- to neo-inositol is described. The key steps of the sequence are oxidation of the hydroxy group at C-5 to the corresponding ketone, followed by a highly (dr = 7.8:1) stereoselective reduction. The route includes nine steps with an overall yield of 51% and is therefore superior to all hitherto reported methods for the preparation of neo-inositol.
Key words
inositols - cyclitols - carbocycles - stereoselective synthesis - regioselectivity
- 1a
Almeida A.Layton M.Karadimitris A. Biochim. Biophys. Acta, Mol. Basis Dis. 2009, 1792: 874Reference Ris Wihthout Link - 1b
Berridge MJ. Biochim. Biophys. Acta, Mol. Cell Res. 2009, 1793: 933Reference Ris Wihthout Link - 1c
Burton A.Hu X.Saiardi A. J. Cell. Physiol. 2009, 220: 8Reference Ris Wihthout Link - 1d
Phosphoinositides:
Chemistry, Biochemistry and Biomedical Applications, ACS Symposium Series
718
Bruzik KS. American Chemical Society; Washington DC: 1999.Reference Ris Wihthout Link - 1e
Hinchliffe K.Irvine R. Nature (London) 1997, 390: 123Reference Ris Wihthout Link - 1f
Derridge MJ. Nature (London) 1993, 361: 315Reference Ris Wihthout Link - 2a
Deranieh RM.Greenberg ML. Biochem. Soc. Trans. 2009, 37: 1099Reference Ris Wihthout Link - 2b
Ferguson MAJ.Williams AF. Ann. Rev. Biochem. 1988, 57: 285Reference Ris Wihthout Link - 3a
Kwon Y.-K.Lee C.Chung S.-K. J. Org. Chem. 2002, 67: 3327Reference Ris Wihthout Link - 3b
Suzuki T.Suzuki ST.Yamada I.Koashi Y.Yamada K.Chida N. J. Org. Chem. 2002, 67: 2874Reference Ris Wihthout Link - 3c
Suzuki T.Tanaka S.Yamada I.Koashi Y.Yamada K.Chida N. Org. Lett. 2000, 2: 1137Reference Ris Wihthout Link - 3d
Chida N.Yoshinaga M.Tobe T.Ogawa S. Chem. Commun. 1997, 1043Reference Ris Wihthout Link - 3e
Chida N.Ogawa S. Chem. Commun. 1997, 807Reference Ris Wihthout Link - 3f
Chida N.Nakazawa K.Ninomiya S.Amano S.Koizumi K.Inaba J.Ogawa S. Carbohydr. Lett. 1995, 1: 335Reference Ris Wihthout Link - 3g
Chida N.Koizumi K.Kitada Y.Yokoyama C.Ogawa S. J. Chem. Soc., Chem. Commun. 1994, 1: 111Reference Ris Wihthout Link - 4
Akiyama T.Hara M.Fuchibe K.Sakamoto S.Yamaguchi K. Chem. Comm. 2003, 1734 - 5
Sureshan KM.Shashidhar MS.Varma AJ. J. Org. Chem. 2002, 67: 6884 - 6
Hosoda A.Miyake Y.Nomura E.Taniguchi H. Chem. Lett. 2003, 32: 1042 - 7
Sureshan KM.Gonnade RG.Shashidhar MS.Puranik VG.Bhadbhade MM. Chem. Commun. 2001, 881 - 8a
Müller P.Nikolaus J.Schiller S.Herrmann A.Möllnitz K.Czapla S.Wessig P. Angew. Chem. 2009, 121: 4497Reference Ris Wihthout Link - 8b
Wessig P.Möllnitz K. J. Org. Chem. 2008, 73: 4452Reference Ris Wihthout Link - 8c
Wessig P.Möllnitz K.Eiserbeck C. Chem. Eur. J. 2007, 13: 4859Reference Ris Wihthout Link - 9
Riley AM.Jenkins DJ.Potter BVL. Carbohydr. Res. 1998, 314: 277 - 10
Hudlicky T.Restrepo-Sanchez N.Kary PD.Jaramillo-Gomez LM. Carbohydr. Res. 2000, 324: 200 - 11
Hudlicky T.Stabile MR.Gibson DT.Whited GM. Org. Synth. 1999, 76: 77 - 12
Chung SK.Kwon YU. Bioorg. Med. Chem. Lett. 1999, 9: 2135 - 13
Gigg J.Gigg R.Payne S.Conant R. Carbohydr. Res. 1985, 142: 132 - 14
Podeschwa M.Plettenburg O.vom Brocke J.Block O.Adelt S.Altenbach HJ. Eur. J. Org. Chem. 2003, 1958 - 15
Mandel M.Hudlicky T. J. Chem. Soc., Perkin Trans. 1 1993, 741 - 16
Mandel M.Hudlicky T. J. Chem. Soc., Perkin Trans. 1 1993, 1537 - 17
Kowarski CR.Sarel S. J. Org. Chem. 1973, 38: 117 - 18
Carpintero M.Fernandez Mayoralas A.Jaramillo C.
J. Org. Chem. 1997, 62: 1916 - 19
Heo JN.Holson EB.Roush WR. Org. Lett. 2003, 5: 1697 - 20
Angyal SJ.Matheson NK. J. Am. Chem. Soc. 1955, 77: 4343 - 21
Nakajima M.Tomida I.Kurihara N.Takei S. Chem. Ber. 1959, 92: 173 - 22
Lee HW.Kishi Y. J. Org. Chem. 1985, 50: 4402 - 23a
Billington DC.Baker R. J. Chem. Soc., Chem. Commun. 1987, 1011Reference Ris Wihthout Link - 23b
Andersch P.Schneider MP. Tetrahedron: Asymmetry 1993, 4: 2135Reference Ris Wihthout Link - 23c
Billington DC.Baker R.Kulagowski JJ.Mawer IM.Vacca JP.de Solms SJ.Huff JR. J. Chem. Soc., Perkin Trans. 1 1989, 1423Reference Ris Wihthout Link - 24a
Gilbert IH.Holmes AB.Pestchanker MJ.Young RC. Carbohydr. Res. 1992, 234: 117Reference Ris Wihthout Link - 24b
Gilbert IH.Holmes AB.Young RC. Tetrahedron Lett. 1990, 31: 2633Reference Ris Wihthout Link - 25
Al Neirabeyeh M.Rollin P. J. Carbohydr. Chem. 1990, 9: 471 - 26a
Dess DB.Martin JC. J. Org. Chem. 1983, 48: 4155Reference Ris Wihthout Link - 26b
Dess DB.Martin JC. J. Am. Chem. Soc. 1991, 113: 7277Reference Ris Wihthout Link
References and Notes
Ketone 9 was obtained as an oil, which was partly decomposed upon flash column chromatography on silica gel.
28Alcohol 4 (20.18 g, 43.63 mmol) was dissolved in anhyd CH2Cl2 (500 mL) and Dess-Martin periodinane (20.59 g, 48.55 mmol, 1.1 equiv) was added. The resulting mixture was stirred at r.t. until complete conversion of 4 was monitored by TLC. The organic layer was washed several times with an aq solution of Na2S2O3/NaHCO3, dried, and evaporated. Ketone 9 was obtained as an oil (19.85 g, 43.10 mmol, 99%) and can be used without further purification; R f = 0.7 (hexanes-EtOAc, 2:1). ¹H NMR (500 MHz, CDCl3): δ = 3.95-3.97 (m, 2 H), 4.51 (d, ² J = 11.6 Hz, 2 H), 4.52-4.54 (m, 2 H), 4.64 (d, ² J = 4.8 Hz, 1 H), 4.67 (d, ² J = 11.6 Hz, 2 H), 4.73 (s, 2 H), 4.76 (t, ³ J = 1.3 Hz, 1 H), 5.52 (d, ³ J = 4.8 Hz, 1 H), 7.24-7.41 (m, 15 H). ¹³C NMR (125 MHz, CDCl3): δ = 69.8 (CH), 71.1 (CH2), 72.2 (CH), 72.3 (CH2), 81.6 (CH), 85.5 (CH2), 127.8 (CH), 127.9 (CH), 127.9 (CH), 128.3 (CH), 128.4 (CH), 136.8 (C), 137.3 (C), 202.7 (C). HRMS: m/z [M + H]+ calcd for C28H28O6 + H: 461.1964; found: 461.1986.
29Ketone 9 (19.84 g, 43.08 mmol) was dissolved in anhyd MeOH (800 mL) and NaBH4 (1.98 g, 52.39 mmol, 1.2 equiv) was added. The reaction mixture was stirred about 20 min until gas and heat evolution ceased. This mixture was directly used in the next step. To obtain spectroscopic data a small sample (2 mL) was taken from the mixture, and the solvent was evaporated. The resulting residue was treated with 0.1 M aq HCl solution and extracted thrice with Et2O. The combined organic layers were dried and evaporated giving a pale yellow oil (49 mg, 0.10 mmol, 98%) with a ratio of 8 (neo) to 4 (myo) of 7.8:1 (determined by ¹H NMR); R f (8) = 0.46 (hexanes-EtOAc, 2:1); R f (4) = 0.44 (hexanes-EtOAc, 2:1). ¹H NMR (8): δ = 2.74 (br s, 1 H), 3.91-3.96 (m, 2 H), 4.30-4.32 (m, 1 H), 4.34-4.37 (m, 2 H), 4.43-4.47 (m, 1 H), 4.52 (s, 2 H), 4.59 (d, ² J = 11.9 Hz, 2 H), 4.63 (d, ² J = 4.5 Hz, 1 H), 4.67 (d, ² J = 11.9 Hz, 2 H), 5.52 (d, ² J = 4.5 Hz, 1 H), 7.25-7.39 (m, 15 H). ¹H NMR (4): matches with literature.²4
30The reaction mixture of the previous step, containing 8 + 4, was treated with concd HCl (60 mL) and refluxed for 3 h. The solvents were evaporated, and the resulting residue was treated with H2O and extracted thrice with CH2Cl2. The combined organic layers were dried, evaporated, and the resulting residue purified by flash chromatography (silica, CHCl3 → CHCl3-EtOAc, 1:2) giving 10 as colorless crystals (14.96 g, 33.21 mmol, 77%); mp 97-98 ˚C; R f = 0.26 (CHCl3-EtOAc, 1:2).