RSS-Feed abonnieren
DOI: 10.1055/s-0029-1245524
© Georg Thieme Verlag KG Stuttgart · New York
Blaufilter-Intraokularlinsen – derzeitige Datenlage
Blue Light-Filtering IOLs – Currently Available DataPublikationsverlauf
Eingegangen: 20.4.2010
Angenommen: 17.5.2010
Publikationsdatum:
12. August 2010 (online)

Zusammenfassung
Daten aus experimentellen und epidemiologischen Untersuchungen haben einen potenziellen Zusammenhang zwischen dem Entfernen der natürlichen Linse, den damit verbundenen, in der Folge entstehenden, photooxidativen Veränderungen der Netzhaut und dem Fortschreiten der altersbedingten Makuladegeneration hergestellt. Ein wesentlicher Faktor könnte der ungeschützte Einfall von blauem Licht sein. In den letzten Jahren wurden deshalb sog. Blaufilterlinsen zum Schutz der Netzhaut eingesetzt. Der vorliegende Beitrag basiert auf einer Datenbankrecherche (Pub Med, National Library of Medicine, USA) und fasst den momentanen Kenntnisstand zum Einsatz von Blaufilterlinsen zusammen: Modellversuche haben gezeigt, dass Blaufilterlinsen im Vergleich zu herkömmlichen UV-Filterlinsen für deutlich reduzierte Mengen an blauem Licht durchlässig sind und sowohl Zellschädigung als auch Bildung von Entzündungsmarkern wie VEGF reduzieren. Die Mehrzahl der vorhandenen klinischen Daten belegt die Kompatibilität von Blaufilterlinsen hinsichtlich Sehschärfe, Kontrast- und Farbsehen sowie subjektiv empfundener Sehqualität, jedoch berichten einzelne Beiträge von einer verminderten Kontrastsensitivität und eingeschränktem Dämmerungssehen. Das gilt auch für den zirkadianen Rhythmus, wobei zu diesem physiologischen Parameter nur theoretische Erwägungen existieren. Langfristige Studien, die belegen, dass Blaufilterlinsen tatsächlich die Inzidenz von Netzhauterkrankungen wie AMD senken, sind bisher nicht verfügbar.
Abstract
Data from both experimental and epidemiological trials have suggested a potential correlation between extraction of the natural lens associated with exposure to photo-oxidative stress to the retina and a progression of diseases such as AMD. A fundamental factor could be the unchecked exposure to blue light. This is why in the past years so-called blue light-filtering intraocular lenses have been implanted to serve as a protection to the retina. The following contribution is based on a data base research (Pub Med, National Library of Medicine, USA) and summarises information currently available on the use of blue light-filtering lenses. Experimental modeling has shown that, compared to regular UV lenses, blue light-filtering lenses block a considerable part of blue light transmission to the retina and reduce damage to retinal cells and production of inflammatory markers such as VEGF. The majority of the clinical data demonstrate that blue light-filtering lenses are compatible in terms of visual acuity, contrast sensitivity and colour perception as well as patient-rated quality of vision. But a few additional studies report reduced contrast sensitivity and limitations in mesopic vision.This is also true for the circadian rhythm. However, the evaluation of this parameter in connection with blue light-filtering lenses has only been done on a theoretical basis. Long-term data showing that blue light-filtering lenses actually do reduce the incidence of retinal diseases such as AMD are currently not available.
Schlüsselwörter
Intraokularlinsen - Blaufilter-IOL - Photopigmente - zirkadianer Rhythmus
Key words
intraocular lenses - blue light-filtering IOL - photosensitive pigments - circadian rhythm
Literatur
- 1
Mainster M A, Ham W T, Delori F C.
Potential Hazards: Instrument and environmental light sources.
Opthalmology.
1983;
90
927-932
MissingFormLabel
- 2 Paultler E L, Morita Jr M, Beezley D. Reversible and irreversible blue light damage to the isolated mammalian pigment epithelium. In LaVail M M, Anderson R E, Hollyfield J G, eds Inherited and Environmentally induced Retinal degenerations. New York: Alan R Liss; 1989: 555-567
MissingFormLabel
- 3
Putting B J, Van Best J A, Vrensen G FJM et al.
Blue-light induced dysfunction of the blood retinal barrier at the pigment epithelium
in albino versus pigmented rabbits.
Exp Eye Res.
1994;
58
31-40
MissingFormLabel
- 4
Hünig S, Hünig G.
Preferring blue light-filtering lenses (Blaudämpfende Linse vorziehen) (Letter).
Deutsches Ärzteblatt Int.
2010;
107
151
MissingFormLabel
- 5
Kohnen T, Baumeister M, Kook D et al.
Cataract surgery with implantation of an artificial lens (Kataraktchirurgie mit Implantation
einer Kunstlinse).
Dtsch Artzebl Int.
2009;
106
695-702
MissingFormLabel
- 6
Mester U, Holz F, Kohnen T et al.
Intraindividual comparison of a blue-light filter on visual function: AF-1 (UY) versus
AF-1 (UV) intraocular lens.
J Cataract Refract Surg.
2008;
34
608-615
MissingFormLabel
- 7
Mainster M A.
Intraocular Lenses Should Block UV Radiation and Violet but Not Blue Light.
Arch Ophthalmol.
2005;
123
550-555
MissingFormLabel
- 8
Young R W.
Pathophysiology of age–related macular degeneration.
Surv Ophthalmol.
1987;
31
291-306
MissingFormLabel
- 9
Shaban H, Richter C.
A2E and blue light in the retina: the paradigm of age-related macular degeneration.
Biol Chem.
2002;
383
537-545
MissingFormLabel
- 10
Whilmark U, Wrigstad A, Roberg K et al.
Lipofuscin accumulation in cultured retinal pigment epithelial cells causes enhanced
sensitivity to blue light irradiation.
Free Rad Biol Med.
1997;
22
1229-1234
MissingFormLabel
- 11
Toyoda Y, Thomson L R, Langner A et al.
Effect of dietary zeaxanthin on tissue distribution of zeaxanthin and lutein in quail.
Invest Ophthalmol Vis Sci.
2002;
43
1210-1221
MissingFormLabel
- 12
Young R W.
Solar radiation and age–related macular degeneration.
Surv Ophthalmol.
1988;
32
252-269
MissingFormLabel
- 13
De La Paz M A, Anderson R E.
Lipid peroxidation in rod outer segments.
Invest Ophth Vis Sci.
1992;
33
2091-2096
MissingFormLabel
- 14
De La Paz M A, Anderson R E.
Region and age–dependent variation in susceptibility of the human retina to lipid
peroxidation.
Invest Ophth Vis Sci.
1992;
33
3497-3499
MissingFormLabel
- 15
Boulton M, Rozanowska M, Rozanowski B.
Retinal photodamage.
J Photochem Photobiol.
2001;
64
144-161
MissingFormLabel
- 16
Hammond B R, Wooten B R, Snodderly D M.
Density of the human crystalline lens is related to the macular pigment carotenoids,
lutein and zeaxanthin.
Optom Vis Sci.
1997;
74
499-504
MissingFormLabel
- 17
Wang J J, Klein R, Smith W et al.
Cataract surgery and the 5-year incidence of late-stage age-related maculopathy: pooled
findings from the Beaver Dam and Blue Mountains eye studies.
Ophthalmology.
2003;
110
1960-1967
MissingFormLabel
- 18
Cugati S, Mitchell P, Rochtchina E.
Cataract surgery and the 10-year incidence of age-related maculopathy: the Blue Mountains
Eye Study.
Ophthalmology.
2006;
113
2020-2025
MissingFormLabel
- 19
Carson D, Margrain T H, Patel A.
New approach to evaluate retinal protection by intraocular lenses against age-related
lipofuscin accumulation-mediated retinal phototoxicity.
J Cataract Refract Surg.
2008;
34
1785-1792
MissingFormLabel
- 20
Yanagi Y, Inoue Y, Iriyama A et al.
Effects of yellow intraocular lenses on light-induced upregulation of vascular endothelial
growth factor.
J Cataract Refractive Surg.
2006;
32
1540-1544
MissingFormLabel
- 21
Kernt M, Neubauer A S, Liegl R et al.
Cytoprotective effects of a blue light-filtering intraocular lens on human retinal
pigment epithelium by reducing phototoxic effects on vascular endothelial growth factor-alpha,
Bax, and Bcl-2 expression.
J Cataract Refract Surg.
2009;
35
354-362
MissingFormLabel
- 22
Hui S, Yi L, Fengling Q L.
Effects of light exposure and the use of intraocular lens on retinal pigment epithelial
cells in vitro.
Photochem Photobiol.
2009;
85
966-969
MissingFormLabel
- 23
Rezai K A, Gasyne E, Seagle B L et al.
AcrySof Natural filter decreases blue light-induced apoptosis in human retinal pigment
epithelium.
Graefes Arch Clin Exp Ophthalmol.
2008;
246
671-676
MissingFormLabel
- 24
Cuthbertson F M, Peirson S N, Wulff K et al.
Blue light-filtering intraocular lenses: review of potential benefits and side effects.
J Cataract Refract Surg.
2009;
35
12 881-1297
MissingFormLabel
- 25
Nolan J M, O’Reilly P, Loughman J et al.
Augmentation of macular pigment following implantation of blue light-filtering intraocular
lenses at the time of cataract surgery.
Invest Ophthalmol Vis Sci.
2009;
50
4777-4785
MissingFormLabel
- 26
Marshall J, Cionni R J, Davison J et al.
Clinical results of the blue-light filtering AcrySof Natural foldable acrylic intraocular
lens.
J Cataract Refractive Surg.
2005;
31
2319-2323
MissingFormLabel
- 27
Wohlfahrt C, Tschuschnig K, Fellner et al.
Visuelle Funktion mit Blaulichtfilter-IOL (Visual function with blue light filter
IOLs).
Klin Monbl Augenheilkd.
2007;
224
23-27
MissingFormLabel
- 28
Eberhard R, Roberti P, Prünte C.
Intraindividual comparison of color perception and contrast sensitivity with and without
a blue-light filtering intraocular lens.
Eur J Ophth.
2009;
19
235-239
MissingFormLabel
- 29
Rodriguez-Galietero A, Montes-Mico R, Muñoz G et al.
Comparison of contrast sensitivity and color discrimination after clear and yellow
intraocular lens implantation.
J Cataract Refractive Surg.
2005;
31
1736-1740
MissingFormLabel
- 30
Cionni R J, Tsai J H.
Color perception with AcrySof natural and AcrySof single-piece intraocular lenses
under photopic and mesopic conditions.
J Cataract Refractive Surg.
2006;
32
236-242
MissingFormLabel
- 31
Mayer S, Wirbelauer C, Pham D T.
Functional results after intraocular lens implantation with or without blue light
filter: an intraindividual comparison.
Klin Monbl Augenheilkd.
2006;
223
142-146
MissingFormLabel
- 32
Schmidinger G, Menapace R, Pieh S.
Intraindividual comparison of color contrast sensitivity in patients with clear and
blue-light-filtering intraocular lenses.
J Cataract Refract Surg.
2008;
34
769-773
MissingFormLabel
- 33
Espindle D, Crawford B, Maxwell A et al.
Quality-of-life improvements in cataract patients with bilateral blue light-filtering
intraocular lenses: clinical trial.
J Cataract Refract Surg.
2005;
31
1952-1959
MissingFormLabel
- 34
Barisic A, Dekaris I, Gabrić N et al.
Blue light filtering intraocular lenses in phacoemulsification cataract surgery.
Coll Antropol.
2007;
31
57-60
MissingFormLabel
- 35
Ao M, Chen X, Huang C et al.
Color discrimination by patients with different types of light-filtering intraocular
lenses.
J Cataract Refract Surg.
2010;
36
389-395
MissingFormLabel
- 36
Augustin A J.
The physiology of scotopic vision, contrast vision, color vision and circadian rhythmicity.
Can these parameters be influenced by blue-light-filter lenses?.
Retina.
2008;
28
1179-1187
MissingFormLabel
- 37
Monnet D, Tepenier L, Brézin A P.
Objective assessment of inflammation after cataract surgery: comparison of 3 similar
intraocular lens models.
J Cataract Refract Surg.
2009;
35
677-681
MissingFormLabel
- 38
Rodriguez-Galietero A, Montes-Mico R, Muñoz G et al.
Blue-light filtering intraocular lens in patients with diabetes: Contrast sensitivity
and chromatic discrimination.
J Cataract Refractive Surg.
2005;
31
2088-2092
MissingFormLabel
- 39
Bhattacharjee H, Bhattacharjee K, Medhi J.
Visual Performance: Comparison of foldable intraocular lenses.
J Cataract Refract Surg.
2006;
32
451-455
MissingFormLabel
- 40
Hammond B R, Bernstein B, Dong J.
The Effect of the AcrySof natural lens on glare disability and photostress.
Am J Ophthalmol.
2009;
148
272-276
MissingFormLabel
- 41
Reddy P, Gao X, Barnes R et al.
The economic impact of blue-filtering intraocular lenses on age-related macular degeneration
associated with cataract surgery: a third-party payer’s perspective.
Curr Med Res Opin.
2006;
22
1311-1318
MissingFormLabel
- 42
Arnarsson A, Sverrison T, Stefánsson E et al.
Risk factors for five-year incident age-related macular degeneration: the Reykjavik
Eye Study.
Am J Ophthalmol.
2006;
142
419-428
MissingFormLabel
- 43
Clemons T E, Milton R C, Klein R et al.
Risk factors for the incidence of Advanced Age-Related Macular Degeneration in the
Age-Related Eye Disease Study (AREDS report no. 19).
Ophthalmology.
2005;
112
533-539
MissingFormLabel
- 44
Chen S J, Cheng C Y, Peng K L et al.
Prevalence and associated risk factors of age-related macular degeneration in an elderly
Chinese population in Taiwan: the Shihpai Eye Study.
Invest Ophthal Vis Sci.
2008;
49
3126-3133
MissingFormLabel
- 45
Schaft T L, Mooy C M, Bruijn de W C et al.
Increased prevalence of disciform ocular degeneration after cataract extraction with
implantation of an intraocular lens.
Br J Ophthalmol.
1994;
78
441-445
MissingFormLabel
- 46
Wirtitsch M G, Schmidinger van der G, Prskavec M et al.
Influence of blue-light-filtering intraocular lenses on color perception and contrast
acuity.
Ophthalmol.
2009;
116
39-45
MissingFormLabel
- 47
Kraats van de J, Norren van D.
Sharp cutoff filters in intraocular lenses optimize the balance between light perception
and light protection.
J Cataract Refract Surg.
2007;
33
879-887
MissingFormLabel
- 48
Mainster M A, Turner P L.
Blue-blocking intraocular lenses: myth or reality?.
Am J Ophthalmol.
2009;
147
8-10
MissingFormLabel
- 49
Mainster M A, Turner P L.
Blue-blocking IOLs decrease photoreception without providing significant photoprotection.
Survey of Ophthalmology.
2009;
55
272-283
MissingFormLabel
- 50
Werner J S.
Night vision in the elderly: consequences for seeing through a „blue filtering” intraocular
lens.
Br J Ophthalmol.
2005;
89
1518-1521
MissingFormLabel
- 51
Aschoff J.
Circadian Rhythms in Man.
Science.
1965;
148
1427-1432
MissingFormLabel
- 52
Sancar A.
Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors.
Chem Rev.
2003;
103
2203-2237
MissingFormLabel
- 53
Ralph M R, Foster R G, Davis F C et al.
Transplanted suprachiasmatic nucleus determines circadian period.
Science.
1990;
247
975-978
MissingFormLabel
- 54
Hannibal J, Hindersson P, Ostergaard J et al.
Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic
tract.
Invest Ophthalmol Vis Sci.
2004;
45
4202-4209
MissingFormLabel
- 55
Berson D M.
Phototransduction in ganglion-cell photoreceptors.
Pflügers Arch.
2007;
454
849-855
MissingFormLabel
- 56
Qiu X, Kumbalasiri T, Carlson S M et al.
Induction of photosensitivity by heterologous expression of melanopsin.
Nature.
2005;
433
745-749
MissingFormLabel
- 57
Panda S, Nayak S, Campo B et al.
Illumination of the melanopsin signalling pathway.
Science.
2005;
307
600-604
MissingFormLabel
- 58
Provencio I, Rodriguez I R, Jiang G et al.
A Novel Human Opsin in the Inner Retina.
J Neuroscience.
2000;
20
600-605
MissingFormLabel
- 59
Berson D M, Dunn F A, Takao M.
Phototransduction by retinal ganglion cells that set the circadian clock.
Science.
2002;
295
1070-1073
MissingFormLabel
- 60
Dacey D M, LIao H W, Peterson B B et al.
Melanopsin expressing ganglion cells in primate retina signal color and irradiance
and project to the LGN.
Nature.
2005;
433
749-754
MissingFormLabel
- 61
Klein D C, Moore R Y.
Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: control by the hypothalamic
tract and the suprachiasmatic nucleus.
Brain Res.
1979;
174
245-262
MissingFormLabel
- 62
Larsen P J, Enquist L W, Card J P.
Characterization of the multisynaptic neuronal control of the rat pineal gland using
viral transneuronal tracing.
Eur J Neurosci.
1998;
10
128-145
MissingFormLabel
- 63
Gooley J J, Lu J, Fischer D et al.
A Broad role for Melanopsin in nonvisual Photoreception.
J Neurosci.
2003;
18
7039-7106
MissingFormLabel
- 64
Czeisler C A, Shannahan T L, Klerman E B et al.
Suppression of melatonin secretion in some blind patients by exposure to bright light.
N Engj J Med.
1995;
332
6-11
MissingFormLabel
- 65
Lockley S W, Skene D J, Arendt J et al.
Relationship between melatonin rhythms and visual loss in the blind.
J Clin Endocrinol Metab.
1997;
82
3763-3770
MissingFormLabel
- 66
Perez-Leon J A, Warren E J, Allen C N et al.
Synaptic inputs to retinal ganglion cells that set the circadian clock.
Eur J Neurosci.
2006;
24
1117-1123
MissingFormLabel
- 67
Panda S, Sato T K, Castrucci A M et al.
Melanopsin (Opn4) requirement for normal light induced circadian phase shifting.
Science.
2002;
298
2213-2216
MissingFormLabel
- 68
Herbert M, Martin S K, Lee C et al.
The effects of prior light history on the suppression of melatonin by light in humans.
J Pineal Res.
2002;
33
198-203
MissingFormLabel
- 69
Hankins M W, Lucas R J.
The primary visual pathway in humans is regulated according to Long term Light exposure
through the action of a nonclassical photopigment.
Curr Biol.
2002;
12
191-198
MissingFormLabel
Prof. Dr. Albert J. Augustin
Augenklinik, Klinikum Karlsruhe
Moltkestraße 90
76133 Karlsruhe
Telefon: ++ 49/7 21/9 74 20 01
Fax: ++ 49/7 21/9 74 20 09
eMail: albertjaugustin@googlemail.com