RSS-Feed abonnieren
DOI: 10.1055/s-0029-1245852
© Georg Thieme Verlag KG Stuttgart · New York
Discrete-Choice-Experimente zur Messung der Zahlungsbereitschaft für Gesundheitsleistungen – ein anwendungsbezogener Literaturreview
Discrete Choice Experiments for Measurement of Willingness-to-Pay for Healthcare Services – an Application-Oriented Literature ReviewPublikationsverlauf
Publikationsdatum:
29. November 2010 (online)

Zusammenfassung
Zielsetzung: Discrete-Choice-Experimente (DCE) sind eine Methode zur Messung der Zahlungsbereitschaft im Kontext von Kosten-Nutzen-Analysen. Verglichen mit herkömmlichen Verfahren bieten DCE vielseitige Ansatzpunkte zur Messung von Präferenzurteilen. Ziel dieser Arbeit war es, die praktischen Anwendungsmöglichkeiten von DCE im Rahmen der Zahlungsbereitschaftsmessung für medizinische Technologien zu untersuchen. Methodik: Literaturreview basierend auf computergestützter Literaturrecherche in medizinischen und wirtschaftswissenschaftlichen Datenbanken (PubMed, EconLit) und bibliografische Suche in Literaturverzeichnissen im Veröffentlichungszeitraum von 01 / 1998 – 05 / 2010. Ergebnisse: Die Nutzenmessung mittels DCE bietet im Gegensatz zu anderen Methoden zwei Vorteile: Zum einen ist das Experiment für die Probanden leicht durchzuführen und zum anderen basieren der Zahlungsbereitschaftsansatz und DCE auf fundierten theoretischen Grundlagen. Aus der Literatur wurden die Validität, Reliabilität, Akzeptanz bei den befragten Personen, Praktikabilität und Wirtschaftlichkeit als Beurteilungskriterien für DCE evaluiert. Auf methodischer Ebene erweisen sich diese als ein Nutzenmaß von hoher Validität und Reliabilität. Besonders die Ergebnisse im Bereich der internen Konsistenz und der theoretischen Validität sind sehr gut. DCE können hilfreiche Anhaltspunkte liefern, insbesondere bei der Identifizierung von nutzenstiftenden Eigenschaften medizinischer Serviceleistungen, bei der Eliminierung von Leistungsbestandteilen, für die keine Zahlungsbereitschaft besteht, und bei der Konzeption von Leistungsangeboten für spezifische Patientengruppen. Die besten Ergebnisse lassen sich erzielen, wenn die befragten Personen mit der Entscheidungssituation vertraut sind. Schwierigkeiten in diesem Zusammenhang bestehen insbesondere in öffentlich finanzierten Gesundheitssystemen, in denen die Preissensitivität der Probanden nicht hinreichend genug ausgeprägt ist. Schlussfolgerung: DCE sind ein leistungsstarkes Verfahren, mit dem neben gesundheitsbezogenen Folgen auch Prozessattribute bewertet und Trade-Offs der Probanden zwischen einzelnen Produktattributen beobachtet werden können. Durch die Nachbildung von alltagstypischen Entscheidungssituationen können insbesondere interventionsspezifische Auswirkungen ermittelt werden. Dennoch erscheint es angebracht, zahlreiche Aspekte einer weiteren empirischen Überprüfung zu unterziehen. Hinsichtlich der Zahlungsbereitschaftsmessung sind Fragen bezüglich des optimalen Designs, psychologischer Aspekte und kognitiver Probleme der Entscheidungsfindung zu berücksichtigen.
Abstract
Aim: Discrete choice experiments (DCE) are a method to assess willingness-to-pay (WTP) within the framework of cost-benefit analysis. Compared to traditional tools, DCE offer a broad application spectrum for the measurement of preferences. The objective of this paper was to evaluate the application of DCE in the measurement of willingness-to-pay for medical interventions. Method: A literature review was conducted in healthcare and economic databases (PubMed, EconLit), as well as manual search and citation-tracking in bibliographies for papers and books published in the period 01 / 1998 – 05 / 2010. Results: Compared to conventional methods, utility measurement using DCE provides two advantages. First, the experiment is less cognitive demanding for respondents. Second, willingness-to-pay and DCE are based on a valid theoretical basis. From the literature, validity, reliability, acceptance by respondents, practicability, and efficiency were evaluated as criteria for assessing DCE. These criteria proved to be of high methodological validity and reliability. Particularly, the results concerning internal consistency and theoretical validity are very encouraging. DCE provide an informative basis for identifying medical service features which create a higher benefit for patients, eliminating services for which no willingness-to-pay exists, and the conception of medical services offered to specific patient groups. Optimized results may be achieved if the respondents are familiar with the framing of the decision situation. Particularly in healthcare systems where respondents exhibit inadequate price sensitivity, this may be a difficulty. Conclusion: DCE are a versatile tool for WTP measurement in health economics, which enables researchers both to evaluate process attributes and to observe individual trade-offs between service attributes. By mimicking everyday decision-making situations the method is especially suitable for the evaluation of intervention-specific effects. However, numerous criteria require empirical examination. Focusing on WTP measurement, aside from experimental design aspects, particularly psychological aspects and cognitive problems of decision heuristics should be taken into consideration.
Schlüsselwörter
Präferenzmessung - Discrete-Choice-Experiment - Zahlungsbereitschaft
Key words
preferences - discrete choice experiment - willingness-to-pay
Literatur
- 1
Cookson R.
Willingness to pay methods in health care: a sceptical view.
Health Econ.
2003;
12
891-894
MissingFormLabel
- 2 Ryan M, Gerard K, Amaya-Amaya M (Hrsg.).. Using Discrete Choice Experiments to Value Health and Health Care. Springer Netherlands. Dordrecht; 2008
MissingFormLabel
- 3
Pol van der M, Shiell A, Au F et al.
Eliciting individual preferences for health care: a case study of perinatal care.
Health Expect.
2010;
13
4-12
MissingFormLabel
- 4
McIntosh E.
Using discrete choice experiments within a cost-benefit analysis framework: some considerations.
Pharmacoeconomics.
2006;
24
855-868
MissingFormLabel
- 5
Ryan M, Bate A, Eastmond C J et al.
Use of discrete choice experiments to elicit preferences.
Qual Health Care.
2001;
10 Suppl 1
i55-60
MissingFormLabel
- 6
Ratcliffe J.
The use of conjoint analysis to elicit willingness-to-pay values. Proceed with caution?.
Int J Technol Assess Health Care.
2000;
16
270-275
MissingFormLabel
- 7
Slothuus Skjoldborg U, Gyrd-Hansen D.
Conjoint analysis. The cost variable: an Achilles’ heel?.
Health Econ.
2003;
12
479-491
MissingFormLabel
- 8
Lancsar E, Louviere J.
Conducting discrete choice experiments to inform healthcare decision making: a user’s
guide.
Pharmacoeconomics.
2008;
26
661-677
MissingFormLabel
- 9
Carlsson F, Martinsson P.
Design techniques for stated preference methods in health economics.
Health Econ.
2003;
12
281-294
MissingFormLabel
- 10
Ryan M, Scott D A, Reeves C et al.
Eliciting public preferences for healthcare: a systematic review of techniques.
Health Technol Assess.
2001;
5
1-186
MissingFormLabel
- 11
Ryan M.
A role for conjoint analysis in technology assessment in health care?.
Int J Technol Assess Health Care.
1999;
15
443-457
MissingFormLabel
- 12 Donaldson C, Shackley P. Willingness to Pay for Health Care. In Scott A, Maynard A, Elliott R, (Hrsg.) Advances in Health Economics.. Chichester: Wiley & Sons; 2003
MissingFormLabel
- 13 Garrod G, Willis K. Economic Valuation of the Environment, Methods and Case Studies. Edward Elgar Publishing Limited. Cheltenham UK; 1999
MissingFormLabel
- 14
Luce R D, Tukey J W.
Simultaneous conjoint measurement: A new type of fundamental measurement.
Journal of Mathematical Psychology.
1964;
1
1-27
MissingFormLabel
- 15
Louviere J J, Woodworth G.
Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach
Based on Aggregate Data.
Journal of Marketing Research (JMR).
1983;
20
350-367
MissingFormLabel
- 16 Lancaster K. Consumer Demand. A New Approach. Columbia University Press. New York; 1971
MissingFormLabel
- 17 Gravelle H, Rees R. Microeconomics. Longman. New York; 1992 2nd ed
MissingFormLabel
- 18 McFadden D. Conditional logit analysis of qualitative choice behaviour. In Zarembka P, (Hrsg.) Frontiers in Econometrics.. New York: Academic Press; 1974: 105-142
MissingFormLabel
- 19
Lloyd A J.
Threats to the estimation of benefit: are preference elicitation methods accurate?.
Health Econ.
2003;
12
393-402
MissingFormLabel
- 20
Ryan M, Netten A, Skatun D et al.
Using discrete choice experiments to estimate a preference-based measure of outcome
– an application to social care for older people.
J Health Econ.
2006;
25
927-944
MissingFormLabel
- 21
Ryan M, Hughes J.
Using conjoint analysis to assess women’s preferences for miscarriage management.
Health Econ.
1997;
6
261-273
MissingFormLabel
- 22
Emery D R, Barron F H.
Axiomatic and numerical conjoint measurement: an evaluation of diagnostic efficacy.
Psychometrika.
1979;
44
195-210
MissingFormLabel
- 23
Ryan M.
A comparison of stated preference methods for estimating monetary values.
Health Econ.
2004;
13
291-296
MissingFormLabel
- 24 McFadden D. Econometric Models of Probabilistic Choice. In Manski C, McFadden D, (Hrsg.) Structural Analysis of Discrete Data with Econometric Applications.. Cambridge: MIT Press; 1981
MissingFormLabel
- 25
Train K E.
Recreation Demand Models with Taste Differences Over People.
Land Economics.
1998;
74
230-239
MissingFormLabel
- 26
Hausman J A, Wise D A.
A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing
Interdependence and Heterogeneous Preferences.
Econometrica.
1978;
46
403-426
MissingFormLabel
- 27
McIntosh E, Ryan M.
Using discrete choice experiments to derive welfare estimates for the provision of
elective surgery: Implications of discontinuous preferences.
Journal of Economic Psychology.
2002;
23
367
MissingFormLabel
- 28
Scott A.
Identifying and analysing dominant preferences in discrete choice experiments: An
application in health care.
Journal of Economic Psychology.
2002;
23
383
MissingFormLabel
- 29 Train K E, Sonnier G. Mixed logit with bounded distributions of correlated partworths. In Alberini A, Scarpa R, (Hrsg.) Application of Simulation Methods in Environmental und Resource Economics.. Dordrecht: Springer; 2005: 117-134
MissingFormLabel
- 30
Hall J, Fiebig D G, King M T et al.
What influences participation in genetic carrier testing? Results from a discrete
choice experiment.
J Health Econ.
2006;
25
520-537
MissingFormLabel
- 31
Eberth B, Watson V, Ryan M et al.
Does one size fit all? Investigating heterogeneity in men’s preferences for benign
prostatic hyperplasia treatment using mixed logit analysis.
Med Decis Making.
2009;
29
707-715
MissingFormLabel
- 32
Lancsar E, Savage E.
Deriving welfare measures from discrete choice experiments: inconsistency between
current methods and random utility and welfare theory.
Health Econ.
2004;
13
901-907
MissingFormLabel
- 33
Kimman M L, Dellaert B G, Boersma L J et al.
Follow-up after treatment for breast cancer: one strategy fits all? An investigation
of patient preferences using a discrete choice experiment.
Acta Oncol.
2010;
49
328-337
MissingFormLabel
- 34 Ryan M, Gerard K. Using Discrete Choice Experiments in Health Economics: Moving Forward. In Scott A, Maynard A, Elliott R, (Hrsg.) Advances in Health Economics.. Chichester: Wiley & Sons; 2003
MissingFormLabel
- 35
Pitchforth E, Watson V, Tucker J et al.
Models of intrapartum care and women’s trade-offs in remote and rural Scotland: a
mixed-methods study.
BJOG.
2008;
115
560-569
MissingFormLabel
- 36
Salkeld G, Ryan M, Short L.
The veil of experience: do consumers prefer what they know best?.
Health Econ.
2000;
9
267-270
MissingFormLabel
- 37
Thaler R H.
Toward a positive theory of consumer choice.
Journal of Economic Behavior and Organization.
1980;
1
39-60
MissingFormLabel
- 38
Grutters J P, Kessels A G, Dirksen C D et al.
Willingness to Accept versus Willingness to Pay in a Discrete Choice Experiment.
Value Health.
2008;
11
1110-1119
MissingFormLabel
- 39
Ryan M, Major K, Skatun D.
Using discrete choice experiments to go beyond clinical outcomes when evaluating clinical
practice.
J Eval Clin Pract.
2005;
11
328-338
MissingFormLabel
- 40 Telser H. Nutzenmessung im Gesundheitswesen. Die Methode der Discrete-Choice-Experimente. Verlag Dr. Kovač. Hamburg; 2002
MissingFormLabel
- 41
Johnson F R, Manjunath R, Mansfield C A et al.
High-risk individuals’ willingness to pay for diabetes risk-reduction programs.
Diabetes Care.
2006;
29
1351-1356
MissingFormLabel
- 42
Taylor S J, Armour C L.
Acceptability of willingness to pay techniques to consumers.
Health Expect.
2002;
5
341-356
MissingFormLabel
- 43
Roux L, Ubach C, Donaldson C et al.
Valuing the benefits of weight loss programs: an application of the discrete choice
experiment.
Obes Res.
2004;
12
1342-1351
MissingFormLabel
- 44
Aristides M, Weston A R, FitzGerald P et al.
Patient preference and willingness-to-pay for Humalog Mix25 relative to Humulin 30 / 70:
a multicountry application of a discrete choice experiment.
Value Health.
2004;
7
442-454
MissingFormLabel
- 45 Louviere J J, Hensher D A, Swait J D. Stated Choice Methods. Analysis and Application. Cambridge University Press. Cambridge; 2000
MissingFormLabel
- 46
Mangham L J, Hanson K, McPake B.
How to do (or not to do) … Designing a discrete choice experiment for application
in a low-income country.
Health Policy Plan.
2009;
24
151-158
MissingFormLabel
- 47
Farrar S, Ryan M.
Response-ordering effects: a methodological issue in conjoint analysis.
Health Econ.
1999;
8
75-79
MissingFormLabel
- 48
Kjaer T, Bech M, Gyrd-Hansen D et al.
Ordering effect and price sensitivity in discrete choice experiments: need we worry?.
Health Econ.
2006;
15
1217-1228
MissingFormLabel
- 49
Tversky A, Kahneman D.
Judgement under uncertainty: heuristics and biases.
Science.
1974;
185
1124-1130
MissingFormLabel
- 50
Morkbak M R, Christensen T, Gyrd-Hansen D.
Choke Price Bias in Choice Experiments.
Environ Resource Econ.
2010;
45
537-551
MissingFormLabel
- 51
Ratcliffe J, Longworth L.
Investigating the structural reliability of a discrete choice experiment within health
technology assessment.
Int J Technol Assess Health Care.
2002;
18
139-144
MissingFormLabel
- 52
Cheraghi-Sohi S, Bower P, Mead N et al.
Making sense of patient priorities: applying discrete choice methods in primary care
using ‘think aloud’ technique.
Fam Pract.
2007;
24
276-282
MissingFormLabel
- 53
Ryan M, Watson V, Entwistle V.
Rationalising the ‘irrational’: a think aloud study of discrete choice experiment
responses.
Health Econ.
2009;
18
321-336
MissingFormLabel
- 54
Bryan S, Buxton M, Sheldon R et al.
Magnetic resonance imaging for the investigation of knee injuries: an investigation
of preferences.
Health Econ.
1998;
7
595-603
MissingFormLabel
- 55
Ryan M, Skatun D.
Modelling non-demanders in choice experiments.
Health Econ.
2004;
13
397-402
MissingFormLabel
- 56 Bateman I J, Carson R T, Day B et al. Economic evaluation with stated preference techniques, a manual. Edward Elgar Publishing Ltd. Cheltenham; 2002
MissingFormLabel
- 57
Miguel F S, Ryan M, Amaya-Amaya M.
‘Irrational’ stated preferences: a quantitative and qualitative investigation.
Health Econ.
2005;
14
307-322
MissingFormLabel
- 58
Haaijer R, Kamakura W, Wedel M.
The No-Choice Alternative in Conjoint Choice Experiments.
International Journal of Market Research.
2001;
43
93-106
MissingFormLabel
- 59
Herbild L, Bech M, Gyrd-Hansen D.
Estimating the Danish populations’ preferences for pharmacogenetic testing using a
discrete choice experiment. The case of treating depression.
Value Health.
2009;
12
560-567
MissingFormLabel
- 60
Kenny P, Hall J, Viney R et al.
Do participants understand a stated preference health survey? A qualitative approach
to assessing validity.
Int J Technol Assess Health Care.
2003;
19
664-681
MissingFormLabel
- 61
Fraenkel L.
Conjoint Analysis at the Individual Patient Level: Issues to Consider as We Move from
a Research to a Clinical Tool.
Patient.
2008;
1
251-253
MissingFormLabel
- 62 Lichtenstein S, Slovic P. The construction of preference. Cambridge University Press. Cambridge; 2006
MissingFormLabel
- 63
Tversky A, Kahneman D.
The framing of decisions and the psychology of choice.
Science.
1981;
211
453-458
MissingFormLabel
- 64
Howard K, Salkeld G.
Does Attribute Framing in Discrete Choice Experiments Influence Willingness to Pay?
Results from a Discrete Choice Experiment in Screening for Colorectal Cancer.
Value Health.
2009;
12
354-363
MissingFormLabel
- 65 Brocke M. Präferenzmessung durch die Discrete Choice-Analyse. Effekte der Aufgabenkomplexität. Gabler. Wiesbaden; 2006
MissingFormLabel
- 66 Zwerina K. Discrete Choice Experiments in Marketing. Use of Priors in Efficient Choice Designs
and Their Application to Individual Preference Measurement. Physica-Verlag. Heidelberg; 1997
MissingFormLabel
- 67
Sandor Z, Wedel M.
Heterogeneous conjoint choice designs.
Journal of Marketing Research.
2005;
42
210-218
MissingFormLabel
- 68 DesignDecisionWiki .Software for discrete choice model estimation. http://ddl.me.cmu.edu/ddwiki/index.php/Software_for_discrete_choice_model_estimation
MissingFormLabel
- 69 Royal Economic Society .Econometric Software Links. http://www.feweb.vu.nl/econometricLinks/software.html
MissingFormLabel
- 70
Hauber A B.
Issues that May Affect the Validity and Reliability of Willingness-to-Pay Estimates
in Stated-Preference Studies.
The Patient: Patient-Centered Outcomes Research.
2008;
1
249-250
MissingFormLabel
- 71
Telser H, Becker K, Zweifel P.
Validity and Reliability of Willingness-to-Pay Estimates: Evidence from Two Overlapping
Discrete-Choice Experiments.
The Patient: Patient-Centered Outcomes Research.
2008;
1
283-298
MissingFormLabel
- 72
Schwappach D L, Strasmann T J.
„Quick and dirty numbers”? The reliability of a stated-preference technique for the
measurement of preferences for resource allocation.
J Health Econ.
2006;
25
432-448
MissingFormLabel
- 73
Seston E M, Elliott R A, Noyce P R et al.
Women’s preferences for the provision of emergency hormonal contraception services.
Pharm World Sci.
2007;
29
183-189
MissingFormLabel
- 74
Lancsar E, Louviere J.
Deleting ‘irrational’ responses from discrete choice experiments: a case of investigating
or imposing preferences?.
Health Econ.
2006;
15
797-811
MissingFormLabel
- 75
Bryan S, Dolan P.
Discrete choice experiments in health economics. For better or for worse?.
Eur J Health Econ.
2004;
5
199-202
MissingFormLabel
- 76
Lloyd A, Doyle S, Dewilde S et al.
Preferences and utilities for the symptoms of moderate to severe allergic asthma.
Eur J Health Econ.
2008;
9
275-284
MissingFormLabel
- 77
Bryan S, Gold L, Sheldon R et al.
Preference measurement using conjoint methods: an empirical investigation of reliability.
Health Econ.
2000;
9
385-395
MissingFormLabel
- 78
Skjoldborg U S, Lauridsen J, Junker P.
Reliability of the discrete choice experiment at the input and output level in patients
with rheumatoid arthritis.
Value Health.
2009;
12
153-158
MissingFormLabel
- 79 Payne J W, Bettmann J R, Luce M F. et al .Behavioral Decision Research. An Overview. In Birnbaum M E, (Hrsg.) Measurement, Judgment and Decision Making. San Diego: Academic Press; 1998: 303-359
MissingFormLabel
- 80 Gigerenzer G, Todd P. ABC Research Group .Simple Heuristics that Make us Smart. Oxford University Press. New York; 1999
MissingFormLabel
- 81
Til J A, Stiggelbout A M, Ijzerman M J.
The effect of information on preferences stated in a choice-based conjoint analysis.
Patient Educ Couns.
2009;
74
264-271
MissingFormLabel
- 82
Zeliadt S B, Ramsey S D, Penson D F et al.
Why do men choose one treatment over another? A review of patient decision making
for localized prostate cancer.
Cancer.
2006;
106
1865-1874
MissingFormLabel
- 83
Bech van M, Kjaer T, Lauridsen J.
Does the number of choice sets matter? Results from a web survey applying a discrete
choice experiment.
Health Econ.
2010;
Feb 8. [Epub ahead of print]
MissingFormLabel
- 84
Witt J, Scott A, Osborne R H.
Designing choice experiments with many attributes. An application to setting priorities
for orthopaedic waiting lists.
Health Econ.
2009;
18
681-696
MissingFormLabel
- 85
Sculpher M, Bryan S, Fry P et al.
Patients’ preferences for the management of non-metastatic prostate cancer: discrete
choice experiment.
BMJ.
2004;
328
382
MissingFormLabel
- 86
Ryan M, Farrar S.
Using conjoint analysis to elicit preferences for health care.
BMJ.
2000;
320
1530-1533
MissingFormLabel
- 87 Hensel-Börner S. Validität computergestützter hybrider Conjoint-Analysen. Gabler. Wiesbaden; 2000
MissingFormLabel
- 88
Gerard K, Shanahan M, Louviere J.
Using stated preference discrete choice modelling to inform health care decision-making:
A pilot study of breast screening participation.
Applied Economics.
2003;
35
1073
MissingFormLabel
- 89
Ryan M, Wordsworth S.
Sensitivity of Willingnes to Pay Estimates to the Level of Attributes in Discrete
Choice Experiments.
Scottish Journal of Political Economy.
2000;
47
504
MissingFormLabel
- 90
Mark T L, Swait J.
Using stated preference and revealed preference modeling to evaluate prescribing decisions.
Health Econ.
2004;
13
563-573
MissingFormLabel
- 91
Gunther O H, Kurstein B, Riedel-Heller S G et al.
The role of monetary and nonmonetary incentives on the choice of practice establishment:
a stated preference study of young physicians in Germany.
Health Serv Res.
2010;
45
212-229
MissingFormLabel
- 92
Ryan M, Watson V.
Comparing welfare estimates from payment card contingent valuation and discrete choice
experiments.
Health Econ.
2009;
18
389-401
MissingFormLabel
- 93
Coast J, Salisbury C, Berker de D et al.
Preferences for aspects of a dermatology consultation.
Br J Dermatol.
2006;
155
387-392
MissingFormLabel
- 94
Coast J, Flynn T, Sutton E et al.
Investigating Choice Experiments for Preferences of Older People (ICEPOP): evaluative
spaces in health economics.
J Health Serv Res Policy.
2008;
13 Suppl 3
31-37
MissingFormLabel
- 95
Elrod T, Louviere J J, Davey K S.
An Empirical Comparison of Ratings-Based and Choice-Based Conjoint Models.
Journal of Marketing Research (JMR).
1992;
29
368-377
MissingFormLabel
- 96
Flynn T N, Louviere J J, Peters T J et al.
Best-worst scaling: What it can do for health care research and how to do it.
J Health Econ.
2007;
26
171-189
MissingFormLabel
- 97
Coast J, Horrocks S.
Developing attributes and levels for discrete choice experiments using qualitative
methods.
J Health Serv Res Policy.
2007;
12
25-30
MissingFormLabel
- 98
Grewal I, Lewis J, Flynn T et al.
Developing attributes for a generic quality of life measure for older people: preferences
or capabilities?.
Soc Sci Med.
2006;
62
1891-1901
MissingFormLabel
- 99
Swancutt D R, Greenfield S M, Wilson S.
Women’s colposcopy experience and preferences: a mixed methods study.
BMC Womens Health.
2008;
8
2
MissingFormLabel
- 100
Cunningham C E, Deal K, Rimas H et al.
Modeling the information preferences of parents of children with mental health problems:
a discrete choice conjoint experiment.
J Abnorm Child Psychol.
2008;
36
1123-1138
MissingFormLabel
- 101
Kievit W, Hulst van L, Riel van P et al.
Factors that influence rheumatologists’ decisions to escalate care in rheumatoid arthritis:
results from a choice-based conjoint analysis.
Arthritis Care Res (Hoboken).
2010;
62
842-847
MissingFormLabel
- 102
Haughney J, Partridge M R, Vogelmeier C et al.
Exacerbations of COPD: quantifying the patient’s perspective using discrete choice
modelling.
Eur Respir J.
2005;
26
623-629
MissingFormLabel
- 103 Himme A. Conjoint-Analysen. In Albers S, Klapper D, Konradt U, (Hrsg.) Methodik der empirischen Forschung.. 3rd ed Wiesbaden: Gabler; 2009: 283-299
MissingFormLabel
- 104 Baumgartner B, Steiner W J. Hierarchisch bayesianische Methoden bei der Conjointanalyse. In Baier D, Brusch M, (Hrsg.) Conjointanalyse.. Berlin Heidelberg: Springer; 2009: 147-159
MissingFormLabel
- 105
Regier D A, Ryan M, Phimister E et al.
Bayesian and classical estimation of mixed logit: An application to genetic testing.
J Health Econ.
2009;
28
598-610
MissingFormLabel
- 106
Regier D A, Friedman J M, Makela N et al.
Valuing the benefit of diagnostic testing for genetic causes of idiopathic developmental
disability: willingness to pay from families of affected children.
Clin Genet.
2009;
75
514-521
MissingFormLabel
- 107
Hole A R.
Modelling heterogeneity in patients’ preferences for the attributes of a general practitioner
appointment.
J Health Econ.
2008;
27
1078-1094
MissingFormLabel
- 108 Gerard K, Currie G. Using discrete choice experiments in health economics. In Jones A, (Hrsg.) The Elgar Companion to Health Economics.. Bodmin, Cornwall: MPG Books; 2006: 405-414
MissingFormLabel
- 109
Nayaradou M, Berchi C, Dejardin O et al.
Eliciting population preferences for mass colorectal cancer screening organization.
Med Decis Making.
2010;
30
224-233
MissingFormLabel
- 110
Chuck A, Adamowicz W, Jacobs P et al.
The Willingness to Pay for Reducing Pain and Pain-Related Disability.
Value Health.
2009;
12
498-506
MissingFormLabel
Dipl.-Kfm. Dominik Rottenkolber, MBR
Lehrstuhl für Gesundheitsökonomie und Management im Gesundheitswesen, Ludwig-Maximilians-Universität
München
Ludwigstr. 28 RG
80539 München
eMail: rottenkolber@bwl.lmu.de