Int J Sports Med 2010; 31(10): 683-688
DOI: 10.1055/s-0030-1255108
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

The Relationship Between Rating of Perceived Exertion and Muscle Activity During Exhaustive Constant-Load Cycling

E. B. Fontes1 , B. P. C. Smirmaul1 , F. Y. Nakamura2 , G. Pereira3 , A. H.  Okano4 , L. R. Altimari2 , J. L. Dantas2 , A. C. de Moraes1
  • 1University of Campinas – UNICAMP, Department of Sports Sciences,Campinas, Brazil
  • 2Londrina State University Physical Education, Londrina
  • 3Positivo University, Nucleus of Biological and Health Science, Curitiba, Brazil
  • 4Federal University of Rio Grande do Norte, Natal, Brazil
Further Information

Publication History

accepted after revision June 01, 2010

Publication Date:
08 July 2010 (online)

Abstract

The aims of this study were to verify the relationship between rating of perceived exertion (RPE) and electromyography (EMG) increases during exhaustive constant-load cycling bouts and, to compare and to correlate the power outputs corresponding to perceived exertion threshold (PET) and neuromuscular fatigue threshold (NFT). 11 men completed 3–4 different exhaustive constant-load cycling bouts on a cycle ergometer, being RPE and EMG measured throughout the bouts. The linear regression of the RPEslope and EMGslope against the power output identified the PET and NFT intensity, respectively. There was a significant relationship between RPEslope and EMGslope (R2=0.69; P<0.01). However, the linearity of RPEslope (R2=0.93±0.07) was significantly higher (P<0.001) than EMGslope (R2=0.63±0.25). In addition, the RPEslope and EMGslope were related to time to exhaustion (r=−0.59 and r=−0.60; P<0.001). There was no significant difference (P=0.42) between PET (201.5±27.9W) and NFT (210.3±22.6W) and they were significantly correlated (r=0.78; P=0.005). Therefore, the RPE and EMG increases during exhaustive constant-load cycling bouts are related and, PET and NFT intensities are similar and closely associated.

References

  • 1 Amann M, Kayser B. Nervous system function during exercise in hypoxia.  High Alt Med Biol. 2009;  10 149-164
  • 2 American College of Sports Medicine .Guidelines for Exercise Testing and Prescription. Baltimore: Williams & Watkins, Lippincott 7th ed.; 2005
  • 3 Bland JM, Altman DG. Statistical methods for assessing agreement between 2 methods of clinical measurement.  Lancet. 1986;  1 307-310
  • 4 Borg GAV. Borg's Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics; 1998
  • 5 Borg GAV. Psychophysical bases of perceived exertion.  Med Sci Sports Exerc. 1982;  14 377-381
  • 6 Camic CL, Housh TJ, Johnson GO, Hendrix CR, Zuniga JM, Mielke M, Schmidt RJ. An EMG frequency-based test for estimating the neuromuscular fatigue threshold during cycle ergometry.  Eur J Appl Physiol. 2010;  108 337-345
  • 7 Coutts AJ, Reaburn PRJ, Murphy AJ, Pine MJ, Impellizzeri FM. Validity of the session-RPE method for determining training load in team sport athletes.  J Sci Med Sport. 2003;  6 525
  • 8 Coutts AJ, Rampinini E, Marcora SM, Castagna C, Impellizzeri FM. Heart rate and blood lactate correlates of perceived exertion during small-sided soccer games.  J Sci Med Sport. 2009;  12 79-84
  • 9 Day ML, McGuigan MR, Brice G, Foster C. Monitoring exercise intensity during resistance training using session RPE scale.  J Strength Cond Res. 2004;  18 353-358
  • 10 DeVries HA, Moritani T, Nagata A, Magnussen K. The relation between critical power and neuromuscular fatigue as estimated from electromyographic data.  Ergonomics. 1982;  25 783-791
  • 11 Dorel S, Drouet JM, Couturier A, Champoux Y, Hug F. Changes of pedaling technique and muscle coordination during an exhaustive exercise.  Med Sci Sports Exerc. 2009;  41 1277-1286
  • 12 Duc S, Betik AC, Grappe F. EMG activity does not change during a time trial in competitive cyclists.  Int J Sports Med. 2005;  26 145-150
  • 13 Duncan MJ, Al-Nakeeb Y, Scurr J. Perceived exertion is related to muscle activity during leg extension exercise.  Res Sports Med. 2006;  14 179-189
  • 14 Enoka RM, Stuart DG. Neurobiology of muscle fatigue.  J Appl Physiol. 1992;  72 1631-1648
  • 15 Eston R, Connoly D. The use of ratings of perceived exertion for exercise prescription in patients receiving beta-blocker therapy.  Sports Med. 1996;  21 176-190
  • 16 Eston R, Lambrick D, Sheppard K, Parfitt G. Prediction of maximal oxygen uptake in sedentary males from a perceptually regulated, sub-maximal graded exercise test.  J Sports Sci. 2008;  26 131-139
  • 17 Faulkner J, Eston R. Overall and peripheral ratings of perceived exertion during a graded exercise test to volitional exhaustion in individuals of high and low fitness.  Eur J Appl Physiol. 2007;  101 613-620
  • 18 Foster C, Florhaug JA, Franklin J, Gottschall L, Hrovatin LA, Parker S, Doleshal P, Dodge C. A new approach to monitoring exercise training.  J Strength Cond Res. 2001;  15 109-115
  • 19 Garcin M, Vautier JF, Vandewalle H, Monod H. Ratings of perceived exertion (RPE) as an index of aerobic endurance during local and general exercises.  Ergonomics. 1998;  41 1105-1114
  • 20 Graef JL, Smith AE, Kendall KL, Walter AA, Moon JR, Lockwood CM, Beck TW, Cramer JT, Stout JR. The relationships among endurance performance measures as estimated from VO2PEAK, ventilatory threshold, and electromyographic fatigue threshold: a relationship design.  Dyn Med. 2008;  10 7-15
  • 21 Groslambert A, Mahon AD. Perceived exertion: influence of age and cognitive development.  Sports Med. 2006;  36 911-928
  • 22 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 23 Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensor and sensor placement procedures.  J Electromyogr Kinesiol. 2000;  10 361-374
  • 24 Hill DW, Smith JC. Determination of critical power by pulmonary gas exchange.  Can J Appl Physiol. 1990;  24 74-86
  • 25 Housh TJ, DeVries HA, Johnson GO, Housh DJ, Evans SA, Stout JR, Evetovich TK, Bradway RM. Electromyographic fatigue thresholds of the superficial muscles of the quadriceps femoris.  Eur J Appl Physiol. 1995;  71 131-136
  • 26 Hug F, Dorel S. Electromyographic analysis of pedaling: a review.  J Electromyogr Kinesiol. 2009;  19 182-198
  • 27 Lagally KM, McCaw ST, Young GT, Medema HC, Thomas DQ. Ratings of perceived exertion and muscle activity during the bench press exercise in recreational and novice lifters.  J Strength Cond Res. 2004;  18 359-364
  • 28 Lagally KM, Robertson RJ, Gallagher KI, Goss FL, Jakicic JM, Lephart SM, McCaw ST, Goodpaster B. Perceived exertion, electromyography, and blood lactate during acute bouts of resistance exercise.  Med Sci Sports Exerc. 2002;  34 552-559
  • 29 Lucía A, Joyos H, Chicharro JL. Physiological response to professional road cycling: climbers vs. time trialists.  Int J Sports Med. 2000;  21 505-512
  • 30 Macdonald JH, Farina D, Marcora SM. Response of electromyographic variables during incremental and fatiguing cycling.  Med Sci Sports Exerc. 2008;  40 335-344
  • 31 Mäestu J, Cicchella A, Purge P, Ruosi S, Jürimäe J, Jürimäe T. Electromyographic and neuromuscular fatigue threshold as concepts of fatigue.  J Strength Cond Res. 2006;  20 824-828
  • 32 Marcora SM, Bosio A, de Morree HM. Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress.  Am J Physiol. 2008;  294 R874-R883
  • 33 Marcora SM. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart and lungs.  J Appl Physiol. 2009;  106 2060-2062
  • 34 Matsumoto T, Ito K, Moritani T. The relationship between anaerobic threshold and electromyographic fatigue threshold in college women.  Eur J Appl Physiol. 1991;  63 1-5
  • 35 McGuigan MR, Al Dayel A, Tod D, Foster C, Newton RU, Pettigrew S. Use of session rating of perceived exertion for monitoring resistance exercise in children who are overweight or obese.  Pediatr Exerc Sci. 2008;  20 333-341
  • 36 Moritani T, Takaishi T, Matsumoto T. Determination of maximal power output at neuromuscular fatigue threshold.  J Appl Physiol. 1993;  74 1729-1734
  • 37 Nakamura FY, Brunetto AF, Hirai DM, Roseguini BT, Kokubun E. The perceived exertion threshold (PET) corresponds to the critical power and to an indicator of maximal oxygen uptake steady state.  Rev Bras Med Esporte. 2005;  11 197-202
  • 38 Nakamura FY, Gancedo MR, Silva LA, Lima JP, Kokubun E. Use of perceived exertion in determining critical velocity in deep water running.  Rev Bras Med Esporte. 2005;  11 1-5
  • 39 Nakamura FY, Okuno NM, Perandini LA, Caldeira LFS, Simões HG, Cardoso JR, Bishop DJ. Critical power can be estimated from nonexhaustive tests based on rating of perceived exertion responses.  J Strength Cond Res. 2008;  22 937-943
  • 40 Nakamura FY, Okuno NM, Perandini LA, de Oliveira RS, Buchheit M, Simões HG. Perceived exertion threshold: comparison with ventilatory thresholds and critical power.  Science & Sports. 2009;  24 196-201
  • 41 Noakes TD, Tucker R. Do we really need a central governor to explain brain regulation of exercise performance? A response to the letter of Dr. Marcora.  Eur J Appl Physiol. 2008;  104 933-935
  • 42 Noakes TD. Evidence that reduced skeletal muscle recruitment explains the lactate paradox during exercise at high altitude.  J Appl Physiol. 2009;  106 737-738
  • 43 Noakes TD. Rating of perceived exertion as a predictor of the duration of exercise that remains until exhaustion.  Br J Sports Med. 2008;  42 623-624
  • 44 Pavlat DJ, Housh TJ, Johnson GO, Eckerson JM. Electromyographic responses at the neuromuscular fatigue threshold.  J Sports Med Phys Fitness. 1995;  35 31-37
  • 45 Pavlat DJ, Housh TJ, Johnson GO, Schmidt RJ, Eckerson JM. An examination of the electromyographic fatigue threshold test.  Eur J Appl Physiol. 1993;  67 305-308
  • 46 St Clair Gibson A, Lambert EV, Rauch LH, Tucker R, Baden DA, Foster C, Noakes TD. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort.  Sports Med. 2006;  36 705-722
  • 47 Takaishi T, Yamamoto T, Ono T, Ito T, Moritani T. Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists.  Med Sci Sport Exerc. 1998;  30 442-449
  • 48 Ulmer H. Concept of an extracellular regulation of muscle metabolic rate during heavy exercise in humans by psychophysiological feedback.  Experentia. 1996;  52 516-520

Correspondence

Eduardo B. Fontes

University of Campinas –

UNICAMP

Sports Science

AV. Erico Verissimo, 701

13083851 Campinas

Brazil

Phone: +27/799/34 7423

Fax: +27/799/34 7423

Email: eduardobfontes@gmail.com

    >