Subscribe to RSS
DOI: 10.1055/s-0030-1258091
Triflic Acid Promoted Tandem Ring-Closure-Aryl-Migration of 2′-Amino Chalcone Epoxide: A New Synthetic Route to Azaisoflavones
Publication History
Publication Date:
11 June 2010 (online)

Abstract
An unprecedented TfOH-promoted tandem ring-closure-aryl-migration of 2′-amino chalcone epoxide leading to 3-aryl-4(1H)-quinolones (azaisoflavones) was achieved. The outcome of the reaction was confirmed by NMR analysis and rationalized through the intermediacy of a phenonium ion. This synthetic protocol furnishes azaisoflavones straightforwardly from simple starting materials under mild conditions.
Key words
2′-amino chalcone epoxide - triflic acid - sequential ring-opening aryl-migration - phenonium ion - azaisoflavones
- 1
Chen W.-P.Egar AL.Hursthouse MB.Malik KMA.Mathews JE.Roberts SM. Tetrahedron Lett. 1998, 39: 8495 - 2
Litkei G.Tökés AL. Synth. Commun. 1991, 21: 1597 - 3
Donnelly JA.Farrell DF. Tetrahedron 1990, 46: 885 - 4
Donnelly JA.Farrell DF. J. Org. Chem. 1990, 55: 1757 - 5
Bilokin MD.Yushchenko DA.Pivovarenko OV.Pivovarenko VG. Ukr. Bioorg. Acta 2008, 6: 13 - 6
Yamamoto Y.Gridnev ID.Patil N.Jin T. Chem. Commun. 2009, 5075 - 7a
Praveen C.Kumar KH.Muralidharan D.Perumal PT. Tetrahedron 2008, 64: 2369Reference Ris Wihthout Link - 7b
Praveen C.Sagayaraj YW.Perumal PT. Tetrahedron Lett. 2009, 50: 644Reference Ris Wihthout Link - 7c
Praveen C.Kiruthiga P.Perumal PT. Synlett 2009, 1990Reference Ris Wihthout Link - 7d
Praveen C.Karthikeyan K.Perumal PT. Tetrahedron 2009, 65: 9244Reference Ris Wihthout Link - 7e
Praveen C.Jegatheesan S.Perumal PT. Synlett 2009, 2795Reference Ris Wihthout Link - 7f
Praveen C.Kalyanasundaram A.Perumal PT. Synlett 2010, 777Reference Ris Wihthout Link - It is well-known that the acid strength of TfOH is significantly altered by H2O, see:
- 10a
Saito S.Sato Y.Ohwada T.Shudo K. J. Am. Chem. Soc. 1994, 116: 2312Reference Ris Wihthout Link - 10b
Olah GA.Batamack P.Deffieux D.Török B.Wang Q.Molnár .Prakash GKS. Appl. Catal., A 1996, 146: 107Reference Ris Wihthout Link - 12a
Dumeunier R.Markó IE. Tetrahedron Lett. 2004, 45: 825Reference Ris Wihthout Link - 12b
Loh T.-P.Hu Q.-Y.Ma L.-T. Org. Lett. 2002, 4: 2389Reference Ris Wihthout Link - 12c
Olah GA.Wu A.-h. Synthesis 1991, 407Reference Ris Wihthout Link - 12d
Rosenfeld DC.Shekhar S.Takemiya A.Utsunomiya M.Hartwig JF. Org. Lett. 2006, 8: 4179Reference Ris Wihthout Link - 12e
Villemin D.Bar N.Hammadi M. Tetrahedron Lett. 1997, 38: 4777Reference Ris Wihthout Link - 12f
Loh T.-P.Hu Q.-Y.Ma L.-T. Org. Lett. 2002, 4: 2389Reference Ris Wihthout Link - 12g
Abid M.Teixeira L.Török B. Tetrahedron Lett. 2007, 48: 4047Reference Ris Wihthout Link - 12h
Puglisi A.Lee A.-L.Schrock RR.Hoveyda AH. Org. Lett. 2006, 8: 1871Reference Ris Wihthout Link - 12i
Elford TG.Arimura Y.Yu SH.Hall DG. J. Org. Chem. 2007, 72: 1276Reference Ris Wihthout Link - 12j
Abid M.Teixeira L.Török B. Org. Lett. 2008, 10: 933Reference Ris Wihthout Link - 12k
Corey EJ.Shibata T.Lee TW. J. Am. Chem. Soc. 2002, 124: 3808Reference Ris Wihthout Link - 12l
Koltunov KY. Tetrahedron Lett. 2007, 48: 5631Reference Ris Wihthout Link - 13a
Olah GA.Prakash GKS.Sommer J. Superacids John Wiley & Sons; New York: 1985.Reference Ris Wihthout Link - 13b
Puglici A.Lee A.-L.Schrock RR.Hoveyda AH. Org. Lett. 2006, 8: 1871Reference Ris Wihthout Link - 13c
Bennasar M.-L.Zulaica E.Tummers S. Tetrahedron Lett. 2004, 45: 6283Reference Ris Wihthout Link - 14a
Smalley RK.Smith RH.Suschitzky H. Tetrahedron Lett. 1978, 26: 2309Reference Ris Wihthout Link - 14b
Tökés AL.Sandor A. Liebigs Ann. Chem. 1993, 8: 927Reference Ris Wihthout Link - 14c
Barker AJ.Paterson TMc. C.Smalley RK.Suschitzky H. J. Chem. Soc., Perkin Trans. 1 1979, 2203Reference Ris Wihthout Link - 14d
Singh OV.Kapil RS. Synlett 1992, 751Reference Ris Wihthout Link - 14e
Huang L.-J.Hsieh M.-C.Teng C.-M.Lee K.-H.Kuo S.-C. Bioorg. Med. Chem. 1998, 6: 1657Reference Ris Wihthout Link - 15a
Jin GH.Ha SK.Park HM.Kang B.Kim SY.Kim H.-D.Ryu J.-H. Bioorg. Med. Chem. Lett. 2008, 18: 4092Reference Ris Wihthout Link - 15b
Ha SK.Lee P.Park JA.Oh HR.Lee SY.Park JH.Lee EH.Ryu JH.Lee KR.Kim SY. Neurochem. Int. 2008, 52: 878Reference Ris Wihthout Link - 16
Traxler P.Green J.Mett H.Séquin U.Furet P. J. Med. Chem. 1999, 42: 1018 - For discussion on the participation of phenonium ions as reaction intermediates, see:
- 18a
Protti S.Dondi D.Fagnoni M.Albini A. Eur. J. Org. Chem. 2008, 2240Reference Ris Wihthout Link - 18b
Pincock JA.Somawardhana C. Can. J. Chem. 1978, 56: 1164Reference Ris Wihthout Link - 18c
Kingsbury CA.Best DC. Bull. Chem. Soc. Jpn. 1972, 45: 3440Reference Ris Wihthout Link - 18d
Hinkle RJ.Thomas DB. J. Org. Chem. 1997, 62: 7534Reference Ris Wihthout Link - 18e
Nagumo S.Ishii Y.Kakimoto Y.-i.Kawahara N. Tetrahedron Lett. 2002, 43: 5333Reference Ris Wihthout Link - 18f
Nagumo S.Ono M.Kakimoto Y.-i.Furukawa T.Hisano T.Mizukami M.Kawahara N.Akita H. J. Org. Chem. 2002, 67: 6618Reference Ris Wihthout Link - 18g
Boye AC.Meyer D.Ingison CK.French AN.Wirth T. Org. Lett. 2003, 5: 2157 ; and references cited thereinReference Ris Wihthout Link - 19
Wislicenus W.Börner K.Kurtz P.Bilhuber EA. Justus Liebigs Ann. Chem. 1917, 413: 206
References and Notes
A highly polar new product was observed on TLC. However it was not characterized.
9The reaction of 1a with AgOTf (1.0 equiv) in wet CH2Cl2 resulted in the formation of 3a in 45% yield. It was thought that AgOTf is hydrolyzed to AgOH and TfOH and the resulting TfOH effects the formation of the product. Similarly, the reaction of 1a with AgOH did not led to any product formation at all. Having observed this, we decided to use TfOH as the catalyst
11The ring-opening of trans-chalcone epoxide 1a with TfOH (0.5 equiv) gave trans-1,2,3,4-tetrahydro-3-hydroxy-2-phenyl-4 (1H)-quinolone (2a). The spectral data and stereochemistry of the product was consistent with the literature value (ref. 1).
17Representative procedure for the synthesis of azaisoflavones (3a-k): To a stirred solution of 2′-amino chalcone epoxide 1a (239 mg, 1.0 mmol) in anhydrous CH2Cl2 (1 mL) were added trifluoromethanesulphonic acid (452 mg, 3.0 mmol), dropwise at 0 ˚C. After completion of the reaction as indicated by TLC, the reaction mixture was quenched with ice-cold water and adjusted the pH to 7.5 with NaHCO3, extracted with CH2Cl2 (3 × 15 mL), and the organic extract was dried with anhydrous sodium sulphate. Removal of the solvent under reduced pressure gave the crude product, which was purified by column chromatog-raphy (EtOAc-petroleum ether, 6:4) to afford the pure product 3a as a brown solid. Mp 258-260 ˚C (Lit.¹9 257 ˚C). IR (KBr): 3454, 1621, 1561, 1515, 1356, 1292, 753, 697 cm-¹. ¹H NMR (400 MHz, DMSO-d 6): δ = 7.27 (t, J = 7.4 Hz, 1 H), 7.34-7.42 (m, 3 H), 7.59 (d, J = 8.0 Hz, 1 H), 7.65 (t, J = 8.0 Hz, 1 H), 7.73 (d, J = 7.4 Hz, 2 H), 8.16 (d, J = 6.1 Hz, 1 H), 8.21 (d, J = 7.9 Hz, 1 H), 12.06 (d, J = 5.7 Hz, 1 H, D2O exchangeable). ¹³C NMR (100 MHz, DMSO-d 6): δ = 118.2, 119.7, 123.3, 125.6, 125.8, 126.4, 127.9, 128.5, 131.5, 136.2, 138.1, 139.3, 174.7. MS (ESI): m/z = 222 [M + H]+. Anal. Calcd for C15H11NO: C, 81.43; H, 5.01; N, 6.33. Found: C, 82.01; H, 5.03; N, 6.35