Synlett 2010(12): 1878-1879  
DOI: 10.1055/s-0030-1258124
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Vanadium Oxytrihalide (VOX3)

Thanh-Tuan Bui*
Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31400 Toulouse, France
e-Mail: bui@lcc-toulouse.fr;

Further Information

Publication History

Publication Date:
30 June 2010 (online)

Biographical Sketches

Thanh-Tuan Bui was born in Phu Tho (Vietnam) in 1983. He obtained his Licence and Maîtrise degrees from the Université de ­Paris-Sud 11 in 2004 and 2005, respectively. He completed his engineering degree (Diplôme d’Ingénieur) of the Ecole Nationale Supérieure de Chimie de Montpellier in 2007. Since November 2007, he has been a Ph.D. candidate at the Université Paul Sabatier de Toulouse and has carried out his doctoral work in the Laboratoire de Chimie de Coordination du CNRS de Toulouse under the guidance of Dr. K. I. Moineau-Chane Ching and Dr. B. Garreau-de ­Bonneval. His current research interest includes the synthesis of neutral metal bis-dithiolene complexes for organic electronic applications.

Introduction

Applications of VOX3 (X = F or Cl) in organic synthesis have gained significant importance in recent years. VOX3 are well-known as strong oxidizing agents promoting both intra- and intermolecular oxidative biaryl coupling. This property has been used for synthesis of natural products, [¹,²] phenanthridine, [³] phenanthrene [4] and phenanthrene-9,10-dione [5] derivatives. It were also used for the synthesis of discotic liquid crystalline triphenylene [6] and heteroanalogues. [7] VOX3 also acted as regio- and stereoselective dimerization agents of stilbene derivatives, [8] and as hydroxylation [9] and aromatization [¹0] agents. Other applications of VOX3 are the synthesis of near-infrared absorbent organic semiconductor vanadyl phthalocyanine for organic electronic applications [¹¹,¹²] and the use as catalysts in asymmetric synthesis. [¹³]

Abstracts

(A) The intramolecular oxidative biaryl coupling is one of the most significant applications of VOX3 in organic synthesis. Numerous important natural products containing the biaryl segments have been synthesized. [¹] [²] As example, the oxidative cyclization with VOF3 of bursehernin resulted in a new deoxy isosteganone. [²]

(B) VOX3 also promotes the intermolecular oxidative biaryl coupling. Weck et al. [6] synthesized the triphenylene grafting functional alkyl chain by oxidative aryl-aryl coupling of the tetraalkoxy-substituted biphenyls with the bisalkylated catechols using VOF3 in the presence of boron trifluoride diethyl ether.

(C) Hartenstein et al. [9] studied the diastereoselective synthesis of the aporphine alkaloid (+)-cataline and they found that the reaction of ()-glaucine with VOF3 gave ()-cataline, respectively. Carefully chromatographic separation of the reaction product yields to small amounts of the respective diastereomeric cis-4-hydroxyaporphine. Its antipode could also be isolated.

(D) VOX3 can be used as metal oxidant in the regio- and stereoselective dimerization of stilbene derivatives. Velu et al. [8] reported that the treatment of 12-hydroxy-3-methoxystilbene with VOF3 gave the ­tricuspidatol A analogue.

(E) Filipan-Litvic et al. and Gradillas et al. reported that vanadium oxytrihalide could be also used as metallic oxidant aromatization agent. [¹0] An example of the rapid, efficient, room-temperature aro­matization of Hantzsch 1,4-dihydropyridines with vanadium(V) salts is given.

(F) Villemin et al. [¹¹] developed a microwave-assisted, dry reaction (solvent-free) for the one-step synthesis of metallophthalocyanines. The strong near-infrared absorbent vanadyl phthalocyanine complex was obtained from phthalonitrile and VOCl3 as blue-green solid in high yield (81%).

(G) VOX3 were also used in the synthesis of VO(salen)(X) complexes, which are powerful catalysts for the asymmetric addition of the cyanide nucleophile to benzaldehyde. [¹³]

    References

  • 1a Su C.-R. Damu AG. Chiang P.-C. Bastow KF. Morris-Natschke SL. Lee K.-H. Wu T.-S. Bioorg. Med. Chem.  2008,  16:  6233 
  • 1b Wang K. Wang Q. Huang R. J. Org. Chem.  2007,  72:  8416 
  • 1c Evans DA. Wood MR. Trotter BW. Richardson TI. Barrow JC. Katz JL. Angew. Chem. Int. Ed.  1998,  37:  2700 
  • 1d Evans D. A., Dinsmore C. J., Watson P. S., Wood M. R., Richardson T. I., Trotter B. W., Katz J. L.; Angew. Chem. Int. Ed.; 1998, 37: 2704
  • 1e Evans DA. Dinsmore CJ. Ratz AM. Evrard DA. Barrow JC. J. Am. Chem. Soc.  1997,  119:  3417 
  • 2 Pettit GR. Meng Y. Gearing RP. Herald DL. Pettit RK. Doubek DL. Chapuis J.-C. Tackett LP. J. Nat. Prod.  2004,  67:  214 
  • 3 Liepa AJ. Nearn RN. Wright DMJ. Aust. J. Chem.  2004,  57:  473 
  • 4 Jin Z. Wang Q. Huang R. Synth. Commun.  2004,  34:  119 
  • 5a Mohr B. Enkelmann V. Wegner G. J. Org. Chem.  1994,  59:  635 
  • 5b Foster EJ. Babuin J. Nguyen N. Williams VE. Chem. Commun.  2004,  2052 
  • 5c Lavigueur C. Foster EJ. Williams VE. J. Am. Chem. Soc.  2008,  130:  11791 
  • 5d Foster EJ. Jones RB. Lavigueur C. Williams VE. J. Am. Chem. Soc.  2006,  128:  8569 
  • 6 Weck M. Mohr B. Maughon BR. Grubbs RH. Macromolecules  1997,  30:  6430 
  • 7a Babuin J. Foster J. Williams VE. Tetrahedron Lett.  2003,  44:  7003 
  • 7b Ichihara M. Suzuki H. Mohr B. Ohta K. Liq. Cryst.  2007,  34:  401 
  • 8 Velu SS. Buniyamin I. Ching LK. Feroz F. Noorbatcha I. Gee LC. Awang K. Wahab IA. Weber J.-FF. Chem. Eur. J.  2008,  14:  11376 
  • 9 Hartenstein J. Satzinger G. Angew. Chem. Int. Ed.  1977,  16:  730 
  • 10a Filipan-Litvic M. Litvic M. Vinkovic V. Tetrahedron  2008,  64:  10912 
  • 10b Gradillas A. del Campo C. Sinisterra JV. Llama EF. J. Chem. Soc., Perkin Trans. 1  1995,  2611 
  • 11 Villemin D. Hammadi M. Hachemi M. Bar N. Molecules  2001,  6:  831 
  • 12 Dong S. Tian H. Song D. Yang Z. Yan D. Geng Y. Wang F. Chem. Commun.  2009,  3086 
  • 13a Belokon YN. Clegg W. Harrington RW. Maleev VI. North M. Pujol MO. Usanov DL. Young C. Chem. Eur. J.  2009,  15:  2148 
  • 13b Belokon YN. Hunt J. North M. Tetrahedron: Asymmetry  2008,  19:  2804 
  • 13c Khan N.-uH. Agrawal S. Kureshy RI. Abdi SHR. Prathap KJ. Jasra RV. Eur. J. Org. Chem.  2008,  4511 
  • 13d Takizawa S. Katayama T. Somei H. Asano Y. Yoshida T. Kameyama C. Rajesh D. Onitsuka K. Suzuki T. Mikami M. Yamatakay H. Jayaprakash D. Sasai H. Tetrahedron  2008,  64:  3361 
  • 13e Belokon YN. Hunt J. North M. Synlett  2008,  2150 
  • 13f Belokon YN. Maleev VI. North M. Usanov DL. Chem. Commun.  2006,  4614 

    References

  • 1a Su C.-R. Damu AG. Chiang P.-C. Bastow KF. Morris-Natschke SL. Lee K.-H. Wu T.-S. Bioorg. Med. Chem.  2008,  16:  6233 
  • 1b Wang K. Wang Q. Huang R. J. Org. Chem.  2007,  72:  8416 
  • 1c Evans DA. Wood MR. Trotter BW. Richardson TI. Barrow JC. Katz JL. Angew. Chem. Int. Ed.  1998,  37:  2700 
  • 1d Evans D. A., Dinsmore C. J., Watson P. S., Wood M. R., Richardson T. I., Trotter B. W., Katz J. L.; Angew. Chem. Int. Ed.; 1998, 37: 2704
  • 1e Evans DA. Dinsmore CJ. Ratz AM. Evrard DA. Barrow JC. J. Am. Chem. Soc.  1997,  119:  3417 
  • 2 Pettit GR. Meng Y. Gearing RP. Herald DL. Pettit RK. Doubek DL. Chapuis J.-C. Tackett LP. J. Nat. Prod.  2004,  67:  214 
  • 3 Liepa AJ. Nearn RN. Wright DMJ. Aust. J. Chem.  2004,  57:  473 
  • 4 Jin Z. Wang Q. Huang R. Synth. Commun.  2004,  34:  119 
  • 5a Mohr B. Enkelmann V. Wegner G. J. Org. Chem.  1994,  59:  635 
  • 5b Foster EJ. Babuin J. Nguyen N. Williams VE. Chem. Commun.  2004,  2052 
  • 5c Lavigueur C. Foster EJ. Williams VE. J. Am. Chem. Soc.  2008,  130:  11791 
  • 5d Foster EJ. Jones RB. Lavigueur C. Williams VE. J. Am. Chem. Soc.  2006,  128:  8569 
  • 6 Weck M. Mohr B. Maughon BR. Grubbs RH. Macromolecules  1997,  30:  6430 
  • 7a Babuin J. Foster J. Williams VE. Tetrahedron Lett.  2003,  44:  7003 
  • 7b Ichihara M. Suzuki H. Mohr B. Ohta K. Liq. Cryst.  2007,  34:  401 
  • 8 Velu SS. Buniyamin I. Ching LK. Feroz F. Noorbatcha I. Gee LC. Awang K. Wahab IA. Weber J.-FF. Chem. Eur. J.  2008,  14:  11376 
  • 9 Hartenstein J. Satzinger G. Angew. Chem. Int. Ed.  1977,  16:  730 
  • 10a Filipan-Litvic M. Litvic M. Vinkovic V. Tetrahedron  2008,  64:  10912 
  • 10b Gradillas A. del Campo C. Sinisterra JV. Llama EF. J. Chem. Soc., Perkin Trans. 1  1995,  2611 
  • 11 Villemin D. Hammadi M. Hachemi M. Bar N. Molecules  2001,  6:  831 
  • 12 Dong S. Tian H. Song D. Yang Z. Yan D. Geng Y. Wang F. Chem. Commun.  2009,  3086 
  • 13a Belokon YN. Clegg W. Harrington RW. Maleev VI. North M. Pujol MO. Usanov DL. Young C. Chem. Eur. J.  2009,  15:  2148 
  • 13b Belokon YN. Hunt J. North M. Tetrahedron: Asymmetry  2008,  19:  2804 
  • 13c Khan N.-uH. Agrawal S. Kureshy RI. Abdi SHR. Prathap KJ. Jasra RV. Eur. J. Org. Chem.  2008,  4511 
  • 13d Takizawa S. Katayama T. Somei H. Asano Y. Yoshida T. Kameyama C. Rajesh D. Onitsuka K. Suzuki T. Mikami M. Yamatakay H. Jayaprakash D. Sasai H. Tetrahedron  2008,  64:  3361 
  • 13e Belokon YN. Hunt J. North M. Synlett  2008,  2150 
  • 13f Belokon YN. Maleev VI. North M. Usanov DL. Chem. Commun.  2006,  4614