Subscribe to RSS
DOI: 10.1055/s-0030-1258801
Highly Efficient Friedel-Crafts Alkylation of Indoles and Pyrrole Catalyzed by Mesoporous 3D Aluminosilicate Catalyst with Electron-Deficient Olefins
Publication History
Publication Date:
30 September 2010 (online)

Abstract
The C3-selective Friedel-Crafts alkylation of indoles with electron-deficient olefins has been achieved using a mesoporous aluminosilicate catalyst with 3D cage-type porous structure to furnish the 3-alkylindole derivatives in excellent yields due to its high surface area, large pore volume and high acidity. Pyrrole also reacted efficiently under similar reaction conditions to give the corresponding 2-alkylated pyrrole derivatives in good yields.
Key words
nanoporous aluminosilicate - conjugate addition - electron-deficient olefins - C3-alkylation of indoles - C2-alkylation of pyrrole
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1
Tabata N.Tomoda H.Takahashi Y.Haneda K.Iwai Y.Woodruff HB.Omura S. J. Antibiot. 1993, 46: 756 - 2
Moore RE.Cheuk C.Patterson GML. J. Am. Chem. Soc. 1984, 106: 6456 - 3
Moore RE.Cheuk C.Yang X.-QG.Patterson GML.Bonjouklian R.Smitka TA.Mynderse JS.Foster RS.Jones ND.Swartzendruber JK.Deeter JB. J. Org. Chem. 1987, 52: 1036 - 4a
Szmuszkovicz J. J. Am. Chem. Soc. 1957, 79: 2819Reference Ris Wihthout Link - 4b
Noland WE.Christensen GM.Sauer GL.Dutton GGS. J. Am. Chem. Soc. 1955, 77: 456Reference Ris Wihthout Link - 4c
Iqbal Z.Jackson AH.Rao KRN. Tetrahedron Lett. 1988, 29: 2577Reference Ris Wihthout Link - 4d
Azizi N.Arynasab F.Saidi MR. Org. Biomol. Chem. 2006, 4: 4275Reference Ris Wihthout Link - 4e
Li D.-P.Guo Y.-C.Ding Y.Xiao W.-J. Chem. Commun. 2006, 799Reference Ris Wihthout Link - 4f
Silvanus AC.Heffernan SJ.Liptrot DJ.Kociok-Köhn G.Andrews BI.Carbery DR. Org. Lett. 2009, 11: 1175Reference Ris Wihthout Link - 5a
Kobayashi S.Hachiya I.Takahori T.Araki M.Ishitani H. Tetrahedron Lett. 1992, 33: 6815Reference Ris Wihthout Link - 5b
Kobayashi S. Synlett 1994, 689Reference Ris Wihthout Link - 5c
Harrington PE.Kerr MA. Synlett 1996, 1047Reference Ris Wihthout Link - 5d
Mori Y.Kakumoto K.Manabe K.Kobayashi S. Tetrahedron Lett. 2000, 41: 3107Reference Ris Wihthout Link - 5e
Yadav JS.Abraham S.Reddy BVS.Sabitha G. Synthesis 2001, 2165Reference Ris Wihthout Link - 5f
Bandini M.Melchiorre P.Melloni A.Umani-Ronchi A. Synthesis 2002, 1110Reference Ris Wihthout Link - 5g
Bandini M.Cozzi PG.Giacomini M.Melchiorre P.Selva S.Umani-Ronchi A. J. Org. Chem. 2002, 67: 3700Reference Ris Wihthout Link - 5h
Alam MM.Varala R.Adapa SR. Tetrahedron Lett. 2003, 44: 5115Reference Ris Wihthout Link - 5i
Srivastava N.Banik BK. J. Org. Chem. 2003, 68: 2109Reference Ris Wihthout Link - 6a
Austin JF.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 1172Reference Ris Wihthout Link - 6b
Blay G.Fernández I.Pedro JR.Vila C. Org. Lett. 2007, 9: 2601Reference Ris Wihthout Link - 6c
Bandini M.Fagioli M.Melchiorre P.Melloni A.Umani-Ronchi A. Tetrahedron Lett. 2003, 44: 5843Reference Ris Wihthout Link - 6d
Jensen KB.Thorhauge J.Hazell RG.Jorgensen KA. Angew. Chem. Int. Ed. 2001, 40: 160Reference Ris Wihthout Link - 6e
Scettri A.Villano R.Acocella MR. Molecules 2009, 14: 3030Reference Ris Wihthout Link - 7a
Bartoli G.Bartolacci M.Bosco M.Foglia G.Giuliani A.Marcantoni E.Sambri L.Torregiani E.
J. Org. Chem. 2003, 68: 4594Reference Ris Wihthout Link - 7b
Zhan Z.-P.Yang R.-F.Lang K. Tetrahedron Lett. 2005, 46: 3859Reference Ris Wihthout Link - 7c
Yadav JS.Reddy BVS.Baishya G.Reddy KV.Narsaiah AV. Tetrahedron 2005, 61: 9541Reference Ris Wihthout Link - 7d
Huang ZH.Zou JP.Jiang WQ. Tetrahedron Lett. 2006, 47: 7965Reference Ris Wihthout Link - 7e
Kumar V.Kaur S.Kumar S. Tetrahedron Lett. 2006, 47: 7001Reference Ris Wihthout Link - 7f
Ko S.Lin C.Tu Z.Wang YF.Wang CC.Yao CF. Tetrahedron Lett. 2006, 47: 487Reference Ris Wihthout Link - 7g
Firouzabadi H.Iranpoor N.Nowrouzi F. Chem. Commun. 2005, 789Reference Ris Wihthout Link - 8a
Chakravarti R.Kalita P.Selvan ST.Oveisi H.Balasubramanian VV.Kantam ML.Vinu A. Green Chem. 2010, 12: 49Reference Ris Wihthout Link - 8b
Shobha D.Chari MA.Mano A.Selvan ST.Mukkanti K.Vinu A. Tetrahedron 2009, 65: 10608Reference Ris Wihthout Link - 8c
Vinu A.Kalita P.Balasubramanian VV.Oveisi H.Selvan ST.Mano A.Chari MA.Reddy BVS. Tetrahedron Lett. 2009, 50: 7132Reference Ris Wihthout Link - 9a
Chakravarti R.Oveisi H.Kalita P.Pal RR.Halligudi SB.Kantam ML.Vinu A. Micropor. Mesopor. Mater. 2009, 123: 338Reference Ris Wihthout Link - 9b
Balasubramanian VV.Srinivasu P.Anand C.Pal RR.Ariga K.Velmathi S.Alam S.Vinu A. Micropor. Mesopor. Mater. 2008, 114: 303Reference Ris Wihthout Link - 9c
Shobha D.Chari MA.Selvan ST.Oveisi H.Mano A.Mukkanti K.Vinu A. Micropor. Mesopor. Mater. 2010, 129: 112Reference Ris Wihthout Link - 9d
Chari MA.Karthikeyan G.Pandurangan A.Naidu TS.Sathyaseelan B.Zaidi SMJ.Vinu A. Tetrahedron Lett. 2010, 51: 2629Reference Ris Wihthout Link
References and Notes
General Procedure.
A mixture of activated olefin (1.0 mmol), indole or pyrrole (1.0
mmol) and AlKIT-5 (100 mg) in DCE (5 mL) was stirred at reflux temperature
for the appropriate time (Table
[¹]
).
After completion of the reaction, as monitored by TLC, the reaction
mixture was diluted with EtOAc (20 mL) and the catalyst was separated
by filtration. The organic layer was concentrated under reduced
pressure and the crude product was purified by silica gel column chromatography
using EtOAc-n-hexane (1:9) as
eluent to afford the pure 3-alkylindole or 2-alkylpyrrole. The spectral data
are in full agreement with the data reported in the literature.5 Spectral
data for the selected products: 2-Phenyl-3-indolyl-1-nitroethane(3g): ¹H NMR (300 MHz,
CDCl3):
δ = 4.91-5.12
(m, 2 H), 5.22 (t, J = 7.0 Hz,
1 H), 7.01 (d, J = 2.2 Hz, 1
H), 7.07-7.37 (m, 8 H), 7.47 (d, 1 H, J = 8.0
Hz, 1 H), 8.06 (br s, 1 H, NH). ¹³C
NMR (75 MHz, CDCl3): δ = 40.9, 78.4,
110.6, 118.7, 120.2, 121.9, 123.0, 126.3, 127.9, 128.2, 129.1, 135.8,
140.2. EIMS: m/z (%) = 266
(100) [M+]. 2-Phenyl-2-pyrrolyl-1-nitroethane
(3m): ¹H NMR (300 MHz,
CDCl3): δ = 4.76 (dd, J = 11.6,
7.4 Hz, 1 H), 4.86 (dd, J = 7.4,
7.1 Hz, 1 H), 4.96 (dd, J = 11.6,
7.1 Hz, 1 H), 6.03-6.05 (m, 1 H), 6.14 (dd, J = 6.0, 2.7 Hz, 1 H), 6.40
(dd, J = 4.0, 2.5 Hz, 1 H),
7.20-7.31 (m, 5 H), 7.85 (s, 1 H). ¹³C
NMR (75 MHz, CDCl3): δ = 137.9, 129.2,
128.9, 128.0, 127.9, 118.2, 108.6, 105.8, 79.2, 42.9. EIMS: m/z (%) = 216
(30) [M+], 169 (100).