Subscribe to RSS
DOI: 10.1055/s-0030-1258810
Synthesis of Spiropyrrolidines and Spiropyrrolizidines by Azomethine Ylide Cycloaddition of Baylis-Hillman Adducts Derived from N-Methyl Maleimide
Publication History
Publication Date:
08 October 2010 (online)

Abstract
The stereoselective synthesis of a series of novel spiropyrrolidines and spiropyrrolizidines has been accomplished through an intermolecular 1,3-dipolar cycloaddition of an azomethine ylides with dipolarophiles derived from the Baylis-Hillman reaction of isatins with N-methyl maleimide.
Key words
Baylis-Hillman reaction - azomethine ylide cycloadditon - spiropyrrolidines - spiropyrrolizidines
-
1a
Morita K. inventors; JP 6,803,364. ; Chem. Abstr. 1968, 69, 58828s -
1b
Morita K.Suzuki Z.Hirose H. Bull. Chem. Soc. Jpn. 1968, 41: 2815 -
1c
Baylis AB, andHillman MED. inventors; DE 2,155,113. ; Chem. Abstr. 1972, 77, 34174q -
1d
Hillman MED, andBaylis AB. inventors; US 3,743,669. - For reviews, see:
-
2a
Drewes SE.Roo GHP. Tetrahedron 1988, 44: 4653 -
2b
Basavaiah D.Rao PD.Hyma RS. Tetrahedron 1996, 52: 8001 -
2c
Ciganek E. Org. React. 1997, 51: 201 -
2d
Langer P. Angew. Chem. Int. Ed. 2000, 39: 3049 -
2e
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 -
3a
Price KE.Broadwater SJ.Jung HM.McQuade DT. Org. Lett. 2005, 7: 147 -
3b
Aggarwal VK.Fulford SY.Lloyd-Jones GC. Angew. Chem. Int. Ed. 2005, 44: 1706 -
3c
Price KE.Broadwater SJ.Walker BJ.McQuade DT. J. Org. Chem. 2005, 70: 3980 -
4a
Santos LS.Pavam CH.Almeida WP.Coelho F.Eberlin MN. Angew. Chem. Int. Ed. 2004, 43: 4330 -
4b
Krafft ME.Haxell TFN.Seibert KA.Abboud KA. J. Am. Chem. Soc. 2006, 128: 4174 -
5a
Iwabuchi Y.Nakatani M.Yokoyama N.Hatakeyama S. J. Am. Chem. Soc. 1999, 121: 10219 -
5b
Yang K.-S.Lee W.-D.Pan J.-F.Chen K.-M. J. Org. Chem. 2003, 68: 915 -
5c
Imbriglio JE.Vasbinder MM.Miller SJ. Org. Lett. 2003, 5: 3741 -
5d
McDougal NT.Schaus SE. J. Am. Chem. Soc. 2003, 125: 12094 -
5e
Wang J.Li H.Yu X.Zu L.Wang W. Org. Lett. 2005, 7: 4293 -
5f
Xu J.Guan Y.Yang S.Ng Y.Peh G.Tan C.-H. Chem. Asian J. 2006, 1: 724 -
5g
Berkessel A.Roland K.Neudörfl JM. Org. Lett. 2006, 8: 4195 -
5h
Nakano A.Takahashi K.Ishihara J.Hatakeyama S. Org. Lett. 2006, 8: 5357 - 6
da Silva JFM.Garden SJ.Pinto AC. J. Braz. Chem. Soc. 2001, 12: 273 - 7
Garden SJ.Skakle JMS. Tetrahedron Lett. 2002, 43: 1969 -
8a
1,3-Dipolar
Cycloaddition Chemistry
Vol. 1 and 2:
Padwa A. Wiley; New York: 1984. -
8b
Tsuge O.Kanemasa S. In Advances in Heterocyclic Chemistry Vol. 45:Katritzky AR. Academic Press; San Diego: 1989. p.231-252 -
8c
Advances in Cycloaddition
Vol.
3:
Grigg R.Sridharan V.Curran DP. Jai Press; London: 1993. p.161-180 -
8d
Nyerges M.Feges I.Toke L. Tetrahedron Lett. 2000, 41: 7951 -
8e
Dondas HA.Grigg R.MacLachlan WS.MacPherson DT.Markandu J.Sridharan V.Suganthan S. Tetrahedron Lett. 2000, 41: 967 -
8f
Grigg R.Thornton-Pett M.Yoganathan G. Tetrahedron 1999, 55: 1763 -
8g
Grigg R.Thornton-Pett M.Xu J.Xu L.-H. Tetrahedron 1999, 55: 13841 -
8h
Pearson WH.Clark RB. Tetrahedron Lett. 1997, 38: 7669 -
8i
Pearson WH.Mi Y. Tetrahedron Lett. 1997, 38: 5441 -
8j
Waldmann H.Blaser E.Jansen M.Letschert H.-P. Angew. Chem., Int. Ed. Engl. 1994, 33: 683 - 9
Sebahar PR.Williams RM. J. Am. Chem. Soc. 2000, 122: 5666 -
10a
Pandey G.Banerjee P.Gadre SR. Chem. Rev. 2006, 106: 4484 -
10b
Coldham I.Hufton R. Chem. Rev. 2005, 105: 2765 -
10c
Nair V.Suja TD. Tetrahedron 2007, 63: 12247 -
10d
Chen X.-H.Wei Q.Luo S.-W.Xiao H.Gong L.-Z. J. Am. Chem. Soc. 2009, 131: 13819 -
10e
Kumar A.Gupta G.Srivastava S. J. Comb. Chem. 2010, 12: 458 -
11a
Kumar RR.Perumal S.Senthilkumar P.Yogeeswari P.Sriram D. Tetrahedron 2008, 64: 2962 -
11b
Kumar RR.Perumal S.Senthilkumar P.Yogeeswari P.Sriram D. Eur. J. Med. Chem. 2009, 3821 -
11c
Kumar RR.Rajesh SM.Perumal S.Banerjee D.Yogeeswari P.Sriram D. Eur. J. Med. Chem. 2010, 411 -
11d
Liu H.Dou G.Shi D. J. Comb. Chem. 2010, 12: 292 - 12
Alkaloids Chemical and Biological
Perspectives
Monlineux RJ.Pelletier SW. Wiley; New York: 1987. Chap. 1. -
13a
Jossang A.Jossang P.Hadi HA.Sevenet T.Bodo B. J. Org. Chem. 1991, 56: 6527 -
13b
James MNG.Williams GJB. Can. J. Chem. 1972, 50: 2407 -
13c
Elderfield RC.Gilman RE. Phytochemistry 1972, 11: 339 -
13d
Cui CB.Kakeya H.Okada G.Onose R.Osada H. J. Antibiot. 1996, 49: 527 -
14a
Kozikowski AP. Acc. Chem. Res. 1984, 17: 410 -
14b
Howe RK.Shelton BR. J. Org. Chem. 1990, 55: 4603 -
14c
De Amici M.De Michelli C.Misani V. Tetrahedron 1990, 46: 1975 -
14d
Cohen VL, andKleinmann EE. inventors; WO 24192. ; Chem. Abstr. 1995, 123: 296610t -
14e
Carroll WA.Grieco PA. J. Am. Chem. Soc. 1993, 115: 1164 -
14f
Earley WG.Oh T.Overman LE. Tetrahedron Lett. 1988, 29: 3785 -
14g
Ban Y.Taga N.Oishi T. Chem. Pharm. Bull. 1976, 24: 736 -
14h
Ban Y.Seto M.Oishi T. Chem. Pharm. Bull. 1975, 23: 2605 -
14i
Ban Y.Taga N.Oishi T. Tetrahedron Lett. 1974, 15: 187 -
14j
Van Tamelen EE.Yardley JP.Miyano M.Hinshaw WB. J. Am. Chem. Soc. 1969, 91: 7333 - 15
Ding K.Lu Y.Nikolovska-Coleska Z.Wang G.Qiu S.Shangary S.Gao W.Qin D.Stuckey J.Krajeswski K.Roler PP.Wang S. J. Med. Chem. 2006, 49: 3432 - 16
Hilton ST.Ho TCT.Pljevalijcic G.Jones K. Org. Lett. 2000, 2: 2639 -
17a
Karthikeyan K.Perumal PT.Etti S.Shanmugam G. Tetrahedron 2007, 63: 10581 -
17b
Karthikeyan K.Seelan TV.Lalitha KG.Perumal PT. Bioorg. Med. Chem. Lett. 2009, 19: 3370 -
17c
Karthikeyan K.Kumar RS.Muralidharan D.Perumal PT. Tetrahedron Lett. 2009, 50: 7175 -
17d
Praveen C.Karthikeyan K.Perumal PT. Tetrahedron 2009, 65: 9244 -
17e
Ramchandiran K.Karthikeyan K.Muralidharan D.Perumal PT. Tetrahedron Lett. 2010, 51: 3006 -
17f
Karthikeyan K.Sivakumar PM.Doble M.Perumal PT. Eur. J. Med. Chem. 2010, 3446 -
18a
Karthikeyan K.Perumal PT. Synlett 2009, 2366 -
18b
Zulykama Y.Perumal PT. Aust. J. Chem. 2007, 60: 205 -
18c
Zulykama Y.Perumal PT. Tetrahedron Lett. 2009, 50: 3892 -
18d
Zulykama Y.Uma U.Devi PC.Perumal PT. Can. J. Chem. 2009, 87: 1682
References and Notes
Experimental Procedure
for the Synthesis of Baylis-Hillman Adducts 3a-g
A
mixture of isatin 1a-g (1.62 mmol), N-methyl
maleimide (2, 1.35 mmol), and DABCO (30
mol%) was stirred at 80 ˚C under neat
conditions. Completion of the reaction was evidenced by TLC analysis.
The residue was dissolved in EtOAc (20 mL) and H2O washed
(2 × 20 mL). The EtOAc layer was dried
over anhyd Na2SO4, and the solvent was removed
under reduced pressure to obtain a crude product, which was purified
by column chromatography with EtOAc-PE (2:8) as an eluent
to obtain Baylis-Hillman adducts 3a-g.
Baylis-Hillman
Adduct 3a
Colorless solid; mp 148-150 ˚C.
IR: 3368, 3115, 1722, 1610, 1488, 1380, 1162 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.88 (s,
3 H), 3.25 (s, 3 H), 4.73 (br s, 1 H), 6.77 (s, 1 H), 6.91 (d, 1
H, J = 7.7
Hz), 7.09 (t, 1 H, J = 7.7
Hz), 7.28 (d, 1 H, J = 6.9
Hz), 7.38 (t, 1 H, J = 7.6
Hz). ¹³C NMR (125 MHz, CDCl3): δ = 23.8,
26.8, 74.6, 109.4, 123.8, 124.8, 127.5, 128.8, 131.2, 143.9, 147.4,
168.9, 169.5, 174.5. MS: m/z = 273 [M + H]+.
Anal. Calcd for C14H12N2O4 (272.08): C,
61.76; H, 4.44; N, 10.29. Found: C, 61.84; H, 4.47; N, 10.16.
Crystallographic data of compound 3f in this letter have been deposited with the Cambridge Crystallographic Data Centre as supplemental publication No. CCDC-787472. Copies of the data can be obtained, free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (1223)336033 or email: deposit@ccdc.cam.ac.uk].
21
Experimental Procedure
for the Synthesis of Spiropyrrolidines 5a-e
A
mixture of isatin 1 (1 mmol), sarcosine
(4, 1.5 mmol), and Baylis-Hillman
adducts 3 (1 mmol) was refluxed in MeOH (10
mL). Completion of the reaction was evidenced by TLC analysis. The
solvent was removed under vacuo, and the crude product was subjected
to column chromatography using EtOAc-PE (2:8) as an eluent
to afford pure spiropyrrolidines 5a-e.
3a′-(3-Hydroxy-1-methyl-2-oxoindolin-3-yl)-1,2′,5′-trimethyl-3′,3a′-dihydro-2′
H
-spiro{indoline-3,1′-pyrrolo[3,4-
c
]pyrrole}-2,4′,6′(5′
H
,6a′
H
)-trione (5a)
Colorless
solid; mp 258-260 ˚C. IR: 3361, 2963, 1699, 1612,
1471, 1373, 1124 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 1.99 (s,
3 H), 2.65 (s, 3 H), 3.21 (s, 3 H), 3.24 (s, 3 H), 3.62 (d, 1 H, J = 11.5 Hz),
3.92 (s, 1 H), 4.32 (d, 1 H, J = 11.5
Hz), 5.81 (br s, 1 H), 6.77 (d, 1 H, J = 7.7
Hz), 6.82 (d, 1 H, J = 7.7
Hz), 6.89-6.93 (m, 2 H), 7.08-7.10 (m, 2 H), 7.26
(t, 1 H, J = 6.9
Hz), 7.38 (t, 1 H, J = 7.6
Hz). ¹³C NMR (125 MHz, CDCl3): δ = 25.1,
26.2, 26.4, 34.6, 53.2, 55.0, 63.4, 72.3, 74.3, 108.8, 108.9, 121.8,
123.3, 123.4, 123.9, 126.4, 126.9, 130.4, 130.7, 143.9, 144.1, 174.0,
175.4, 177.1, 177.6. MS: m/z = 461 [M + H]+.
Anal. Calcd for C25H24N4O5 (460.17):
C, 65.21; H, 5.25; N, 12.17. Found: C, 65.29; H, 5.23; N, 12.24.
Crystallographic data of compound 5c in this letter have been deposited with the Cambridge Crystallographic Data Centre as supplemental publication No. CCDC-787473. Copies of the data can be obtained, free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (1223)336033 or email: deposit@ccdc.cam.ac.uk].
23Experimental Procedure for the Synthesis of Spiropyrrolizidines 7a-e A mixture of isatin 1 (1 mmol), l-proline (6, 1.5 mmol), and Baylis-Hillman adducts 3 (1 mmol) was refluxed in MeOH (10 mL). Completion of the reaction was evidenced by TLC analysis. The solvent was removed under vacuo, and the crude product was subjected to column chromatography using EtOAc-PE (2:8) as an eluent to afford pure spiropyrrolizidines 7a-e. 8b′-(1-Ethyl-3-hydroxy-2-oxoindolin-3-yl)-1,2′-dimethyl-6′,7′,8′,8a′-tetrahydro-1′ H -spiro{indoline-3,4′-pyrrolo[3,4- a ]pyrrolizine}-1′,2,3′(2′ H ,3a′ H ,8b′ H )-trione (7b) Brown solid; mp 230-232 ˚C. IR: 3342, 2935, 1705, 1610, 1468, 1371, 1089 cm-¹. ¹H NMR (500 MHz, CDCl3): δ = 1.31 (t, 3 H, J = 6.9 Hz), 1.72-1.79 (m, 1 H), 1.87-1.91 (m, 3 H), 2.14-2.18 (m, 1 H), 2.31-2.36 (m, 1 H), 2.70 (s, 3 H), 3.21 (s, 3 H), 3.63-3.69 (m, 1 H), 3.80-3.86 (m, 1 H), 4.16 (s, 1 H), 4.76 (t, 1 H, J = 6.9 Hz), 5.66 (br s, 1 H), 6.78 (d, 1 H, J = 7.7 Hz), 6.86 (t, 2 H, J = 8.4 Hz), 6.93 (t, 1 H, J = 7.7 Hz), 7.06 (t, 1 H, J = 6.9 Hz), 7.17 (d, 1 H, J = 6.9 Hz), 7.26 (t, 1 H, J = 7.7 Hz), 7.35 (t, 1 H, J = 7.7 Hz). ¹³C NMR (125 MHz, CDCl3): δ = 12.4, 24.6, 24.9, 25.8, 26.3, 35.0, 42.3, 58.5, 62.2, 65.0, 66.9, 75.0, 108.7, 108.8, 122.5, 122.9, 124.2, 124.3, 126.4, 127.6, 130.2, 130.5, 143.4, 143.7, 174.3, 175.0, 177.2. MS: m/z = 501 [M + H]+. Anal. Calcd for C28H28N4O5 (500.21): C, 67.19; H, 5.64; N, 11.19. Found: C, 67.42; H, 5.66; N, 11.40.