Subscribe to RSS
DOI: 10.1055/s-0030-1259064
Synthesis of Tri- and Diaryloxybenzenes by Rhodium-Catalyzed Complete Intermolecular [2+2+2] Cycloaddition of Aryl Ethynyl Ethers
Publication History
Publication Date:
24 November 2010 (online)

Abstract
We have established that a cationic rhodium(I)-H8-BINAP complex catalyzes the complete intermolecular homo-[2+2+2] cycloaddition of aryl ethynyl ethers and cross-[2+2+2] cycloaddition of aryl ethynyl ethers with electron-deficient monoalkynes, leading to tri- and diaryloxybenzenes, respectively, at room temperature.
Key words
alkynes - aryl ethynyl ethers - [2+2+2] cycloaddition - H8-BINAP - rhodium
- For recent reviews of the transition-metal-catalyzed [2+2+2] cycloaddition reactions, see:
- 1a
Galan BR.Rovis T. Angew. Chem. Int. Ed. 2009, 48: 2830Reference Ris Wihthout Link - 1b
Tanaka K. Chem. Asian J. 2009, 4: 508Reference Ris Wihthout Link - 1c
Varela JA.Saá C. Synlett 2008, 2571Reference Ris Wihthout Link - 1d
Shibata T.Tsuchikama K. Org. Biomol. Chem. 2008, 1317Reference Ris Wihthout Link - 1e
Heller B.Hapke M. Chem. Soc. Rev. 2007, 36: 1085Reference Ris Wihthout Link - 1f
Agenet N.Buisine O.Slowinski F.Gandon V.Aubert C.Malacria M. Organic Reactions Vol. 68:RajanBabu TV. John Wiley and Sons; Hoboken: 2007. p.1Reference Ris Wihthout Link - 1g
Chopade PR.Louie J. Adv. Synth. Catal. 2006, 348: 2307Reference Ris Wihthout Link - 1h
Gandon V.Aubert C.Malacria M. Chem. Commun. 2006, 2209Reference Ris Wihthout Link - 1i
Kotha S.Brahmachary E.Lahiri K. Eur. J. Org. Chem. 2005, 4741Reference Ris Wihthout Link - 1j
Gandon V.Aubert C.Malacria M. Curr. Org. Chem. 2005, 9: 1699Reference Ris Wihthout Link - 1k
Yamamoto Y. Curr. Org. Chem. 2005, 9: 503Reference Ris Wihthout Link - 2
Semmelhack MF.Park J. Organometallics 1986, 5: 2550 - 3
Suzuki D.Urabe H.Sato F. J. Am. Chem. Soc. 2001, 123: 7925 - 4
Takahashi T. inventors; JP 11263737. ; Chem. Abstr. 1999, 131, 228541Reference Ris Wihthout Link - For the transition-metal-mediated intermolecular [4+2]-benzannulation reactions using alkynyl ethers, see:
- 5a
Darbasie ND.Schnatter WFK.Warner KF.Manolache N. Tetrahedron Lett. 2006, 47: 963Reference Ris Wihthout Link - 5b
Dudley GB.Takaki KS.Cha DD.Danheiser RL. Org. Lett. 2000, 2: 3407Reference Ris Wihthout Link - 5c
Gevorgyan V.Quan LG.Yamamoto Y. J. Org. Chem. 2000, 65: 568Reference Ris Wihthout Link - 5d
Morris KG.Saberi SP.Thomas SE. J. Chem. Soc., Chem. Commun. 1993, 209Reference Ris Wihthout Link - 5e
Danheiser RL.Brisbois RG.Kowalczyk JJ.Miller RF. J. Am. Chem. Soc. 1990, 112: 3093Reference Ris Wihthout Link - 5f
Danheiser RL.Gee SK.Perez JJ. J. Am. Chem. Soc. 1986, 108: 806Reference Ris Wihthout Link - For the nickel-catalyzed complete intermolecular cross-[2+2+2] cycloaddition of two ethyl ethynyl ethers and carbon dioxide, see:
- 6a
Tsuda T.Kunisada K.Nagahama N.Morikawa S.Saegusa T. Synth. Commun. 1989, 19: 1575Reference Ris Wihthout Link - 6b For the rhodium-catalyzed
complete intermolecular cross-[2+2+2] cycloaddition
of two ethyl ethynyl ethers with an isocyanate, see:
Oberg KM.Lee EE.Rovis T. Tetrahedron 2009, 65: 5056Reference Ris Wihthout Link - 7 For the nickel-catalyzed complete
intermolecular cross-[3+2+2] cycloaddition
of ethyl cyclopropylideneacetate, an internal 1,3-diyne, and an
alkynyl ether, see:
Yamasaki R.Terashima N.Sotome I.Komagawa S.Saito S. J. Org. Chem. 2010, 75: 480 - 8
Komine Y.Tanaka K. Org. Lett. 2010, 12: 1312Reference Ris Wihthout Link - 9 For the rhodium-catalyzed [2+2+2] cycloadditions
of phenol-linked 1,6-diynes with alkynes and nitriles, leading to
substituted dibenzofurans and azadibenzofurans, see:
Komine Y.Kamisawa A.Tanaka K. Org. Lett. 2009, 11: 2361Reference Ris Wihthout Link - Tri- and diaryloxybenzenes are useful compounds in material sciences. For selected recent examples, see:
- 10a
Pei S.Chen X.Jiang Z.Peng W. J. Appl. Polym. Sci. 2010, 117: 2069Reference Ris Wihthout Link - 10b
Yamanaka M.Fujii H. J. Org. Chem. 2009, 74: 5390Reference Ris Wihthout Link - 10c
Chen X.Zhang Y.Liu B.Zhang J.Wang H.Zhang W.Chen Q.Pei S.Jiang Z. J. Mater. Chem. 2008, 18: 5019Reference Ris Wihthout Link - 10d
Rao X.Dang G.Zhou H.Yang W.Cui G.Chen C.Yokota R. J. Polym. Sci., Part A: Polym. Chem. 2007, 45: 4844Reference Ris Wihthout Link - 13a
Tanaka K.Shirasaka K. Org. Lett. 2003, 5: 4697Reference Ris Wihthout Link - 13b
Tanaka K.Toyoda K.Wada A.Shirasaka K.Hirano M. Chem. Eur. J. 2005, 11: 1145Reference Ris Wihthout Link - 14 For our account of the cationic
rhodium(I)-biaryl bisphosphine-complex-catalyzed [2+2+2]-cycloaddition reactions,
see:
Tanaka K. Synlett 2007, 1977 - For the rhodium(I)-catalyzed [2+2+2] cycloaddition of diynes with internal alkynyl ethers, see:
- 16a
Alayrac C.Schollmeyer D.Witulski B. Chem. Commun. 2009, 1464Reference Ris Wihthout Link - 16b
Clayden J.Moran WJ. Org. Biomol. Chem. 2007, 5: 1028Reference Ris Wihthout Link
References and Notes
Aryl ethynyl ethers are stable compounds and can be readily handled and purified without any special precautions. For the synthesis of aryl ethynyl ethers 1a-e, see ref. 8.
12
Typical Procedure
(Table 2, Entry 1)
Under an argon atmosphere, H8-BINAP
(6.3 mg, 0.010 mmol) and [Rh(cod)2]BF4 (4.1
mg, 0.010 mmol) were dissolved in CH2Cl2 (1.0
mL), and the mixture was stirred for 5 min. H2 was introduced
to the resulting solution in a Schlenk tube. After stirring at r.t.
for 0.5 h, the resulting mixture was concentrated to dryness. To
a CH2Cl2 (0.5 mL) solution of the residue
was added a CH2Cl2 (1.5 mL) solution of 1a (67.3 mg, 0.400 mmol). The mixture was
stirred at r.t. for 1 h. The resulting mixture was concentrated
and purified on a preparative TLC (n-hexane-toluene = 4:1),
which furnished 2a (34.2 mg, 0.0678 mmol,
51% yield) and 3a (23.0 mg, 0.0456
mmol, 34% yield).
Compound 2a: ¹H
NMR (300 MHz, CDCl3): δ = 7.81-7.76 (m,
6 H), 7.72-7.70 (m, 3 H), 7.47-7.35 (m, 9 H),
7.27-7.23 (m, 3 H), 6.53 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 159.6, 153.9,
134.2, 130.4, 130.0, 127.7, 127.2, 126.6, 125.0, 119.9, 115.0, 103.9.
ESI-HRMS: m/z calcd for C36H24O3Na [M + Na]+:
527.1618; found: 527.1635.
Compound 3a: ¹H
NMR (300 MHz, CDCl3): δ = 7.84-7.64 (m,
9 H), 7.45-7.33 (m, 7 H), 7.30-7.13 (m, 6 H),
6.93-6.86 (m, 2 H). ¹³C NMR
(75 MHz, CDCl3): δ = 155.7, 154.7, 154.6,
154.1, 149.0, 142.9, 134.22, 134.19, 134.10, 130.3, 130.1, 130.0,
129.9, 129.7, 129.6, 127.73, 127.68, 127.66, 127.13, 127.08, 127.00,
126.6, 126.45, 126.43, 124.9, 124.6, 124.4, 123.1, 119.7, 119.1,
118.8, 114.8, 114.1, 113.2, 112.5, 111.7. ESI-HRMS: m/z calcd for C36H24O3Na [M + Na]+:
527.1618; found: 527.1617.
Compound 2b: ¹H
NMR (300 MHz, CDCl3): δ = 8.11-8.08 (m,
3 H), 7.84-7.81 (m, 3 H), 7.61-7.58 (m, 3 H),
7.51-7.44 (m, 6 H), 7.38-7.33 (m, 3 H), 7.07-7.05
(m, 3 H), 6.45 (s, 3 H).
Compound 3b: ¹H
NMR (300 MHz, CDCl3): δ = 8.21-8.18 (m,
1 H), 8.00-7.97 (m, 1 H), 7.86-7.83 (m, 2 H),
7.74-7.69 (m, 2 H), 7.61-7.58 (m, 1 H), 7.51-7.49
(m, 4 H), 7.40-7.21 (m, 7 H), 7.16-7.14 (m, 1
H), 7.01-6.97 (m, 2 H), 6.92-6.90 (m, 2 H), 6.82-6.78
(m, 1 H).
Compound 2c: ¹H
NMR (300 MHz, CDCl3): δ = 7.21-7.12 (m,
6 H), 7.07-7.01 (m, 3 H), 6.95-6.92 (m, 3 H),
6.12 (s, 3 H), 2.20 (s, 9 H).
Compound 3c: ¹H
NMR (300 MHz, CDCl3): δ = 7.23-7.18 (m,
1 H), 7.16-6.89 (m, 10 H), 6.81-6.78 (m, 1 H),
6.74-6.72 (m, 1 H), 6.60-6.56 (m, 2 H), 2.24 (s,
3 H), 2.05 (s, 3 H), 1.98 (s, 3 H).
Compound 2d: ¹H NMR (300 MHz,
CDCl3): δ = 6.98-6.94 (m,
6 H), 6.88-6.82 (m, 6 H), 6.19 (s, 3 H), 3.78 (s, 9 H).
Compound 3d: ¹H NMR (300 MHz,
CDCl3): δ = 6.96-6.80 (m,
13 H), 6.61-6.54 (m, 2 H), 3.78 (s, 3 H), 3.77 (s, 6 H).
Compound 2e: ¹H NMR (300 MHz,
CDCl3): δ = 7.62-7.60 (m,
6 H), 7.12-7.10 (m, 6 H), 6.51 (s, 3 H).
Compound 3e: ¹H NMR (300 MHz,
CDCl3): δ = 7.64-7.61 (m,
2 H), 7.54-7.51 (m, 4 H), 7.23-7.20 (m, 1 H),
7.13-7.10 (m, 2 H), 6.95-6.90 (m, 6 H).
Typical Procedure
(Table 4, Entry 1)
Under an argon atmosphere, H8-BINAP
(6.3 mg, 0.010 mmol) and [Rh(cod)2]BF4 (4.1
mg, 0.010 mmol) were dissolved in CH2Cl2 (1.0
mL), and the mixture was stirred for 5 min. H2 was introduced
to the resulting solution in a Schlenk tube. After stirring at r.t.
for 0.5 h, the resulting mixture was concentrated to dryness. To
a CH2Cl2 (0.5 mL) solution of the residue
and 4a (44.9 mg, 0.400 mmol) was added
a CH2Cl2 (1.5 mL) solution of 1a (67.3
mg, 0.400 mmol). The mixture was stirred at r.t. for 1 h. The resulting mixture
was concentrated and purified on a preparative TLC (n-hexane-EtOAc = 15:1),
which furnished 5aa (53.9 mg, 0.120 mmol,
60% yield) and 6aa (18.5 mg, 0.0412
mmol, 21% yield).
Compound 5aa: ¹H
NMR (300 MHz, CDCl3): δ = 7.81-7.77 (m,
4 H), 7.72-7.69 (m, 2 H), 7.47-7.37 (m, 4 H),
7.34-7.33 (m, 2 H), 7.27-7.23 (m, 1 H), 7.21-7.18
(m, 1 H), 6.66 (d, J = 1.8
Hz, 1 H), 6.56 (d, J = 1.8
Hz, 1 H), 4.28 (q, J = 7.1 Hz,
2 H), 2.38 (s, 3 H), 1.20 (t, J = 7.1
Hz, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 167.1,
158.92, 158.91, 155.6, 154.7, 153.8, 139.40, 139.38, 134.1, 130.4,
130.1, 130.0, 129.8, 127.7, 127.6, 127.1, 126.6, 126.5, 125.0, 124.7,
121.6, 119.8, 119.4, 115.3, 114.9, 113.9, 107.6, 61.2, 19.8, 14.1. ESI-HRMS: m/z calcd for C30H24O4Na [M + Na]+:
471.1567; found: 471.1575.
Compound 6aa: ¹H
NMR (300 MHz, CDCl3): δ = 7.81-7.77 (m,
4 H), 7.70-7.65 (m, 2 H), 7.47-7.34 (m, 5 H),
7.30 (d, J = 2.4
Hz, 1 H), 7.24-7.20 (m, 2 H), 7.13-7.12 (m, 1
H), 6.90 (d, J = 2.4
Hz, 1 H), 4.36 (q, J = 7.1
Hz, 2 H), 2.48 (s, 3 H), 1.37 (t, J = 7.1
Hz, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 167.1,
155.9, 155.2, 154.5, 134.23, 134.20, 133.6, 130.2, 130.08, 130.04,
129.9, 127.7, 127.1, 127.0, 126.8, 126.6, 124.8, 124.6, 119.5, 118.8,
116.5, 114.6, 113.9, 112.1, 61.2, 14.2, 12.9. ESI-HRMS: m/z calcd for C30H24O4Na [M + Na]+:
471.1567; found: 471.1567.
Compound 5ab: ¹H
NMR (300 MHz, CDCl3): δ = 7.80-7.77 (m,
4 H), 7.71-7.68 (m, 2 H), 7.46-7.32 (m, 6 H),
7.27-7.17 (m, 2 H), 6.69 (d, J = 1.8
Hz, 1 H), 6.54 (d, J = 1.8
Hz, 1 H), 4.29 (q, J = 7.1
Hz, 2 H), 2.66 (t, J = 7.4
Hz, 2 H), 1.65-1.55 (m, 2 H), 1.43-1.30 (m, 2
H), 1.22 (t, J = 7.1
Hz, 3 H), 0.91 (t, J = 7.4
Hz, 3 H).
Compound 6ab: ¹H
NMR (300 MHz, CDCl3): δ = 7.83-7.78 (m,
4 H), 7.70-7.68 (m, 2 H), 7.47-7.35 (m, 4 H),
7.31-7.30 (m, 2 H), 7.25-7.19 (m, 3 H), 6.84 (d, J = 2.7 Hz,
1 H), 4.36 (q, J = 7.2
Hz, 2 H), 2.94 (t, J = 7.5
Hz, 2 H), 1.61-1.51 (m, 2 H), 1.47-1.35 (m, 5
H), 0.90 (t, J = 7.5
Hz, 3 H).
Compound 5ac: ¹H
NMR (300 MHz, CDCl3): δ = 7.87-7.61 (m,
6 H), 7.54-7.13 (m, 13 H), 6.81 (d, J = 2.4
Hz, 1 H), 6.70 (d, J = 2.4
Hz, 1 H), 4.06 (q, J = 7.2
Hz, 2 H), 0.93 (t, J = 7.2 Hz,
3 H). An aromatic proton of the tetrasubstituted benzene moiety
of minor isomer 6ac: 6.93 (d, J = 2.4 Hz,
1 H). Ethoxy protons of minor isomer 6ac:
3.99 (q, J = 7.2
Hz, 2H), 0.89 (t, J = 7.2
Hz, 3 H).
Compound 5ba: ¹H
NMR (300 MHz, CDCl3): δ = 8.23-8.20 (m,
1 H), 8.02-7.99 (m, 1 H), 7.84-7.81 (m, 2 H),
7.62-7.57 (m, 2 H), 7.52-7.41 (m, 4 H), 7.37-7.32
(m, 2 H), 7.01-6.96 (m, 2 H), 6.53 (d, J = 2.4
Hz, 1 H), 6.45 (d, J = 2.4
Hz, 1 H), 4.22 (q, J = 7.1
Hz, 2 H), 2.34 (s, 3 H), 1.14 (t, J = 7.1
Hz, 3 H).
Compound 5ca: ¹H
NMR (300 MHz, CDCl3): δ = 7.24-6.99 (m,
6 H), 6.95-6.85 (m, 2 H), 6.31 (d, J = 2.1
Hz, 1 H), 6.17 (d, J = 2.1
Hz, 1 H), 4.30 (q, J = 7.2
Hz, 2 H), 2.30 (s, 3 H), 2.23 (s, 3 H), 2.15 (s, 3 H), 1.27 (t, J = 7.2 Hz,
3 H).
Compound 5da: ¹H
NMR (300 MHz, CDCl3): δ = 6.98-6.90 (m,
4 H), 6.88-6.83 (m, 4 H), 6.39 (d, J = 2.0
Hz, 1 H), 6.29 (d, J = 2.0
Hz, 1 H), 4.32 (q, J = 7.1
Hz, 2 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 2.30 (s, 3 H), 1.29 (t, J = 7.1 Hz,
3 H).
Compound 6da: ¹H
NMR (300 MHz, CDCl3): δ = 7.11 (d, J = 2.7 Hz,
1 H), 6.94-6.90 (m, 2 H), 6.87-6.83 (m, 6 H), 6.61
(d, J = 2.7
Hz, 1 H), 4.33 (q, J = 7.1
Hz, 2 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 2.42 (s, 3 H), 1.36 (t, J = 7.1 Hz,
3 H).
Compound 5ea: ¹H
NMR (300 MHz, CDCl3): δ = 7.61-7.56 (m,
4 H), 7.08-7.03 (m, 4 H), 6.72 (d, J = 2.1
Hz, 1 H), 6.52 (d, J = 2.1
Hz, 1 H), 4.26 (q, J = 7.2
Hz, 2 H), 2.39 (s, 3 H), 1.18 (t, J = 7.2
Hz, 3 H).
Compound 6ea: ¹H
NMR (300 MHz, CDCl3): δ = 7.60-7.56 (m,
4 H), 7.43 (d, J = 2.4
Hz, 1 H), 7.06-7.03 (m, 2 H), 6.97-6.94 (m, 2
H), 6.84 (d, J = 2.4
Hz, 1 H), 4.38 (q, J = 7.2
Hz, 2 H), 2.41 (s, 3 H), 1.39 (t, J = 7.2
Hz, 3 H).
Compound 10: ¹H NMR (300 MHz, CDCl3): δ = 7.89-7.72 (m, 4 H), 7.72-7.63 (m, 1 H), 7.49-7.37 (m, 3 H), 7.37-7.29 (m, 2 H), 7.22-7.17 (m, 1 H), 7.16-7.10 (m, 1 H), 6.98-6.91 (m, 1 H), 6.87-6.81 (m, 1 H), 4.60 (s, 2 H), 4.58 (s, 2 H), 2.42 (s, 3 H).