Synlett 2011(5): 647-650  
DOI: 10.1055/s-0030-1259551
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthetic Study on Sespendole, an Indole Sesquiterpene Alkaloid: Stereo­controlled Synthesis of the Sesquiterpene Segment Bearing All Requisite Stereogenic Centers

Kumi Sugino, Atsuo Nakazaki, Minoru Isobe, Toshio Nishikawa*
Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
Fax: +81(52)7894111; e-Mail: nisikawa@agr.nagoya-u.ac.jp;
Further Information

Publication History

Received 16 December 2010
Publication Date:
11 February 2011 (online)

Abstract

Stereocontrolled synthesis of a sesquiterpene segment with all requisite stereogenic centers for sespendole has been achieved. Synthetic features of our strategy involve (1) highly stereoselective [2,3]-Wittig rearrangement to obtain sterically congested quaternary carbon and (2) isomerization of a spiro epoxide into aldehyde with Cp2TiCl2/Mn in a highly stereoselective manner.

    References and Notes

  • 1 Yamaguchi Y. Masuma R. Kim Y.-P. Uchida R. Tomoda H. Omura S. Mycoscience  2004,  45:  9 
  • 2 Uchida R. Tomoda H. Omura S. J. Antibiot.  2006,  59:  298 
  • 3 Uchida R. Kim Y.-P. Namatame I. Tomoda H. Omura S. J. Antibiot.  2006,  59:  93 
  • 4 Uchida R. Kim Y.-P. Nagamitsu T. Tomoda H. Omura S. J. Antibiot.  2006,  59:  338 
  • For recent synthetic studies on indole diterpenes, see:
  • 5a Smith AB. Davulcu AH. Cho YS. Ohmoto K. Kürti L. Ishiyama H. J. Org. Chem.  2007,  72:  4596 
  • 5b Smith AB. Kürti L. Davulcu AH. Cho YS. Ohmoto K. J. Org. Chem.  2007,  72:  4611 ; and references therein
  • 5c Churruca F. Fousteris M. Ishikawa Y. Rekowski MW. Hounsou C. Surrey T. Gainnis A. Org. Lett.  2010,  12:  2096 
  • 5d Enomoto M. Kuwahara S. J. Org. Chem.  2010,  75:  6286 
  • For reviews of indole synthesis, see:
  • 6a Cacchi S. Fabrizi G. Chem. Rev.  2005,  105:  2873 
  • 6b Humphrey GR. Kuethe JT. Chem. Rev.  2006,  106:  2875 
  • 6c Krüger K. Tillack A. Beller M. Adv. Synth. Catal.  2008,  350:  2153 
  • 6d Barluenga J. Rodríguez F. Fañanás FJ. Chem. Asian J.  2009,  4:  1036 
  • 7a Nedelec L. Gasc JC. Bucourt R. Tetrahedron  1974,  30:  3263 
  • 7b Arséniyadis S. Rodriguez R. Cabrera E. Thompson A. Ourisson G. Tetrahedron  1991,  47:  7045 
  • 7c Ciceri P. Demnitz FWJ. Tetrahedron Lett.  1997,  38:  389 
  • 9 Nakamura T. Tsuboi K. Oshida M. Nomura T. Nakazaki A. Kobayashi S. Tetrahedron Lett.  2009,  50:  2835 
  • 10 Winkler JD. Subrahmanyam D. Tetrahedron  1992,  48:  7049 
  • 11 Hashimoto S. Ban M. Yanagiya Y. Sakata S. Ikegami S. Tetrahedron Lett.  1991,  32:  4027 
  • 12 Nagata W. Yoshioka M. Hirai S. J. Am. Chem. Soc.  1972,  94:  4635 
  • 13 Bhagwat SS. Gude C. Cohen DS. Lee W. Furness P. Clarke FH. J. Med. Chem.  1991,  34:  1790 
  • 14 Zammit SC. Ferro V. Hammond E. Rizzacasa MA. Org. Biomol. Chem.  2007,  5:  2826 
  • 15 Organocopper Reagents: A Practical Approach   Taylor RJK. Oxford University Press; Oxford: 1994. 
  • 17 Mori K. Amaike M. Itou M. Tetrahedron  1993,  49:  1871 
  • 18a Ohira S. Synth. Commun.  1989,  19:  561 
  • 18b Müller S. Liepold B. Roth GJ. Bestmann HJ. Synlett  1996,  521 
  • 18c Marshall JA. Johns BA. J. Org. Chem.  2000,  65:  1501 
  • 19a Corey EJ. Fuchs PL. Tetrahedron Lett.  1972,  13:  3769 
  • 19b Armstrong A. Bhonoah Y. Shanahan SE.
    J. Org. Chem.  2007,  72:  8019 
  • 20a Seyferth D. Grim SO. Read TO. J. Am. Chem. Soc.  1961,  83:  1617 
  • 20b Frye LL. Robinson CH. J. Org. Chem.  1990,  55:  1579 
  • 21a RajanBabu TV. Nugent WA. Beattie MS. J. Am. Chem. Soc.  1990,  112:  6408 
  • 21b RajanBabu TV. Nugent WA. J. Am. Chem. Soc.  1994,  116:  986 
  • 22a Cuerva JM. Campaña AG. Justicia J. Rosales A. Oller-López JL. Robles R. Cárdenas DJ. Buñuel E. Oltra JE. Angew. Chem. Int. Ed.  2006,  45:  5522 
  • 22b Jiménez T. Campaña AG. Bazdi B. Paradas M. Arráez-Román D. Segura-Carretero A. Fernández-Gutiérrez A. Oltra JE. Robles R. Justicia J. Cuerva JM. Eur. J. Org. Chem.  2010,  4288 
  • For isomerization of spiro epoxide into aldehyde using Cp2TiCl2/Mn, see:
  • 23a Schobert R. Höhlein U. Synlett  1990,  465 
  • 23b Bhaskar KV. Mander LN. Tetrahedron Lett.  1996,  37:  719 
  • 25 Related reaction for the formation of allylic alcohol from spiro epoxide was reported: Justicia J. Oltra JE. Barrero AF. Guadaño A. González-Coloma A. Cuerva JM. Eur. J. Org. Chem.  2005,  712 
8

All new compounds were fully characterized by ¹H NMR, ¹³C NMR, and IR analyses.
Data for Selected Compounds
Alcohol 12: IR (film): νmax = 3362, 2954, 2856, 1635, 1472, 1253, 1063, 835 cm. ¹H NMR (400 MHz, CDCl3): δ = 0.04 (3 H, s, CH3 of TBS), 0.05 (3 H, s, CH3 of TBS), 0.24 (9 H, s, CH3 of TMS), 0.88 (9 H, s, CH3 of t-Bu), 1.02 (3 H, s, CCH 3axCH3eq), 1.02 (3H, s, CCH3axCH 3eq), 1.04 (3 H, s, CCH3), 1.29 [3 H, s, C(CH2OH)CH 3], 1.29 (1 H, dt, J = 12.0, 3.5 Hz, CHbHcCHd H e), 1.55-1.63 (2 H, m, CHaCH b H c), 1.77 (1 H, ddd, J = 14.0, 6.5, 4.5 Hz, CHhHiCH jHk), 1.82 (1 H, ddd, J = 14.0, 10.0, 6.0 Hz, CHhHiCHj H k), 2.09 (1 H, ddd, J = 13.0, 10.0, 8.0 Hz, CHbHcCH dHe), 2.22 (1 H, dddd, J = 13.5, 6.0, 4.5, 1.0 Hz, CHh H iCHjHk), 2.46 (1 H, dddt, J = 13.5, 10.0, 6.5, 1.0 Hz, CH hHiCHjHk), 3.57 (1 H, br d, J = 11.0 Hz, CH xHyOH), 3.68 (1 H, d, J = 11.0 Hz, CHx H yOH), 3.77 (1 H, dd, J = 9.5, 7.0 Hz, TBSOCHa), 4.71 (1 H, br s, H mHnC=C), 4.89 (1 H, br s, Hm H nC=C). ¹³C NMR (100 MHz, CDCl3): δ = -4.7, -3.8, 4.5, 18.1, 19.2, 20.2, 22.7, 25.9, 26.1, 27.6, 28.4, 28.7, 29.9, 46.2, 46.5, 48.4, 68.0, 74.1, 88.9, 108.4, 152.6. ESI-HRMS: m/z calcd for C25H50O3Si2Na [M + Na]: 477.3191; found: 477.3202.
Alcohol 2: IR (film): νmax = 3311, 2955, 2103, 1253, 1097, 1006, 836 cm. ¹H NMR (600 MHz, CDCl3): δ = 0.03 (3 H, s, CH3 of TBS) 0.04 (3 H, s, CH3 of TBS), 0.21 (9 H, s, CH3 of TMS), 0.87 (9 H, s, CH3 of t-Bu), 0.95 (3 H, s, CCH3CH 3), 1.00 (3 H, s, CCH 3CH3), 1.26 (3 H, s, CCH3), 1.33 (1 H, dt, J = 13.0, 3.5 Hz, CHbHcCHd H e), 1.35 (1 H, td, J = 13.5, 4.0 Hz, CHgCH hHi), 1.41 (3 H, s, CCH3), 1.60-1.69 (3 H, m, CHaCH b H c, CHhHiCH jHk), 1.72 (1 H, dq, J = 13.5, 3.5 Hz, CHgCHh H i), 1.81 (1 H, td, J = 14.0, 4.0 Hz, CHhHiCHj H k), 2.05 (1 H, td, J = 13.0, 5.0 Hz, CHbHcCH dHe), 2.08 (1 H, tt, J = 12.5, 4.0 Hz, HOCH2CH g), 2.20 (1 H, s, CºCH), 3.41 (1 H, br s, HOCH xHyCHg), 3.75 (1 H, dd, J = 11.0, 6.0 Hz, TBSOCHa), 4.03 (1 H, dd, J = 10.5, 5.0 Hz, HOCHx H yCHg). ¹³C NMR (100 MHz, CDCl3): δ = -4.7, -3.7, 4.5, 18.0, 19.9, 21.4, 21.5, 22.4, 25.1, 25.8, 26.0, 26.3, 28.5, 42.9, 44.6, 45.1, 46.2, 66.0, 71.2, 73.9, 87.5, 92.7. ESI-HRMS: m/z calcd for C26H50O3Si2Na [M + Na]: 489.3191; found: 489.3210.

16

Relevant 1,4-addition of α,β-unsaturated ketone, derived from 3 (vide supra) with Me2CuLi, was also examined; however, only 1,2-addition product was obtained. Therefore we concluded that this sort of α,β-unsaturated carbonyl compounds would be unreactive due to their steric hindrance.

24

This reaction did not proceed with Cp2TiCl2 as a Lewis acid. When the Lewis acid such as MgBr2˙OEt2, BF3˙OEt2, or AlCl3 was used for this conversion, the reaction provide lower yield of the desired aldehyde.