Abstract
This article provides a brief outline of the concept of reaction
integration in flow systems and some examples. The use of flow microreactors
enables space integration of multiple reactions, especially those
involving highly reactive short-lived reactive intermediates to
enhance the power and speed of organic synthesis.
Key words
flow microreactor - step-by-step synthesis - space
integration of reactions
References and Notes
<A NAME="RP00410ST-1">1 </A>
Wender PA.
Verma VA.
Paxton TJ.
Pillow TH.
Acc.
Chem. Res.
2008,
41:
40
<A NAME="RP00410ST-2">2 </A>
A project of ‘Organic Synthesis
based on Reaction Integration. Development of New Methods and Creation
of New Substances’ supported by Grant-in-Aid for Scientific Research
on Innovative Areas, The Ministry of Education, Culture, Sports,
Science, and Technology, Japan, started in 2009.
<A NAME="RP00410ST-3">3 </A>
Tietze LF.
Chem.
Rev.
1996,
96:
115
<A NAME="RP00410ST-4A">4a </A>
Ryu I.
Sonoda N.
Chem.
Rev.
1996,
96:
177
<A NAME="RP00410ST-4B">4b </A>
Parsons PJ.
Penkett CS.
Shell AJ.
Chem. Rev.
1996,
96:
195
<A NAME="RP00410ST-4C">4c </A>
Louie J.
Bielawski CW.
Grubbs RH.
J. Am. Chem. Soc.
2001,
123:
11312
<A NAME="RP00410ST-5">5 </A>
Enders D.
Hüttl MRM.
Grondal C.
Raabe G.
Nature (London)
2006,
441:
861
<A NAME="RP00410ST-6A">6a </A>
Babu G.
Orita A.
Otera J.
Chem. Lett.
2008,
37:
1296
<A NAME="RP00410ST-6B">6b </A>
Shimizu M.
Shimono K.
Hiyama T.
Chem.
Lett.
2006,
35:
838
<A NAME="RP00410ST-6C">6c </A>
Fuwa H.
Tako T.
Ebine M.
Sasaki M.
Chem. Lett.
2008,
37:
904
<A NAME="RP00410ST-6D">6d </A>
Ikeda S.
Shibuya M.
Kanoh N.
Iwabuchi Y.
Chem. Lett.
2008,
37:
962
<A NAME="RP00410ST-6E">6e </A>
Cernak TA.
Lambert TH.
J.
Am. Chem. Soc.
2009,
131:
3124
<A NAME="RP00410ST-6F">6f </A>
Hardee DJ.
Lambert TH.
J.
Am. Chem. Soc.
2009,
131:
7536
<A NAME="RP00410ST-7">7 </A>
Multicomponent(coupling) reactions
are reactions that convert more than two components directly into
their products in a single reactor. Therefore, they can be also carried
out in one-pot sequential way.
<A NAME="RP00410ST-8A">8a </A>
Dömling A.
Ugi I.
Angew.
Chem. Int. Ed.
2000,
39:
3168
<A NAME="RP00410ST-8B">8b </A>
Bienaymé H.
Hulme C.
Oddon O.
Schmitt P.
Chem. Eur. J.
2000,
6:
3321
<A NAME="RP00410ST-8C">8c </A>
Balme G.
Bossharth E.
Monteiro N.
Eur.
J. Org. Chem.
2003,
4101
<A NAME="RP00410ST-8D">8d </A>
Stacy W.
Orga MG.
J. Comb. Chem.
2007,
9:
14
<A NAME="RP00410ST-9">9 </A>
Ugi I.
Pure
Appl. Chem.
2001,
73:
187
<A NAME="RP00410ST-10A">10a </A>
Orita A.
Yaruva J.
Otera J.
Angew. Chem. Int. Ed.
1999,
38:
2267
<A NAME="RP00410ST-10B">10b </A>
Orita A.
Yoshioka N.
Struwe P.
Braier A.
Beckmann A.
Otera J.
Chem. Eur. J.
1999,
5:
1355
<A NAME="RP00410ST-10C">10c </A>
Clarke PA.
Santos S.
Martin WHC.
Green Chem.
2007,
9:
438
<A NAME="RP00410ST-10D">10d </A>
Nokami T.
Tsuyama H.
Shibuya A.
Nakatsutsumi T.
Yoshida J.
Chem.
Lett.
2008,
37:
942
<A NAME="RP00410ST-10E">10e </A>
Numata Y.
Kawashima J.
Hara T.
Tajima Y.
Chem. Lett.
2008,
37:
1018
<A NAME="RP00410ST-10F">10f </A>
Yamaguchi K.
Kotani M.
Kamata K.
Mizuno N.
Chem. Lett.
2008,
37:
1258
Multicatalytic processes:
<A NAME="RP00410ST-11A">11a </A>
Ajamian A.
Gleason JL.
Angew. Chem. Int.
Ed.
2004,
43:
3754
<A NAME="RP00410ST-11B">11b </A>
Fogg DE.
dos Santos EN.
Coord.
Chem. Rev.
2004,
248:
2365
<A NAME="RP00410ST-11C">11c </A>
De Meijere A.
von Zezschwitz P.
Bräse S.
Acc. Chem. Res.
2005,
38:
413
<A NAME="RP00410ST-11D">11d </A>
Wasilke JC.
Obrey SJ.
Baker RT.
Bazan GC.
Chem.
Rev.
2005,
105:
1001
<A NAME="RP00410ST-11E">11e </A>
Schmidt B.
Pure
Appl. Chem.
2006,
78:
469
Some recent reviews:
<A NAME="RP00410ST-12A">12a </A>
Fletcher PDI.
Haswell SJ.
Pombo-Villar E.
Warrington BH.
Watts P.
Wong SYF.
Zhang X.
Tetrahedron
2002,
58:
4735
<A NAME="RP00410ST-12B">12b </A>
Jas G.
Kirschning A.
Chem. Eur. J.
2003,
9:
5708
<A NAME="RP00410ST-12C">12c </A>
Jähnisch K.
Hessel V.
Löwe H.
Baerns M.
Angew. Chem.
Int. Ed.
2004,
43:
406
<A NAME="RP00410ST-12D">12d </A>
Kiwi-Minsker L.
Renken A.
Catal. Today
2005,
110:
2
<A NAME="RP00410ST-12E">12e </A>
Doku GN.
Verboom W.
Reinhoudt DN.
van den Berg A.
Tetrahedron
2005,
61:
2733
<A NAME="RP00410ST-12F">12f </A>
Watts P.
Haswell SJ.
Chem. Soc. Rev.
2005,
34:
235
<A NAME="RP00410ST-12G">12g </A>
Yoshida J.
Nagaki A.
Iwasaki T.
Suga S.
Chem. Eng. Tech.
2005,
3:
259
<A NAME="RP00410ST-12H">12h </A>
Geyer K.
Codée JDC.
Seeberger PH.
Chem. Eur. J.
2006,
12:
8434
<A NAME="RP00410ST-12I">12i </A>
Whitesides G.
Nature
(London)
2006,
442:
368
<A NAME="RP00410ST-12J">12j </A>
deMello AJ.
Nature (London)
2006,
442:
394
<A NAME="RP00410ST-12K">12k </A>
Song H.
Chen DL.
Ismagilov RF.
Angew. Chem. Int. Ed.
2006,
45:
7336
<A NAME="RP00410ST-12L">12l </A>
Kobayashi J.
Mori Y.
Kobayashi S.
Chem.
Asian J.
2006,
1:
22
<A NAME="RP00410ST-12M">12m </A>
Brivio M.
Verboom W.
Reinhoudt DN.
Lab
Chip
2006,
6:
329
<A NAME="RP00410ST-12N">12n </A>
Kobayashi J.
Mori Y.
Kobayashi S.
Chem.
Asian J.
2006,
1:
22
<A NAME="RP00410ST-12O">12o </A>
Mason BP.
Price KE.
Steinbacher JL.
Bogdan AR.
McQuade DT.
Chem. Rev.
2007,
107:
2300
<A NAME="RP00410ST-12P">12p </A>
Ahmed-Omer B.
Brandtand JC.
Wirth T.
Org. Biomol.
Chem.
2007,
5:
733
<A NAME="RP00410ST-12Q">12q </A>
Smith CD.
Baxendale IR.
Lanners S.
Hayward JJ.
Smith SC.
Ley SV.
Org. Biomol.
Chem.
2007,
5:
1559
<A NAME="RP00410ST-12R">12r </A>
Sahoo HR.
Kralj JG.
Jensen KF.
Angew. Chem. Int. Ed.
2007,
46:
5704
<A NAME="RP00410ST-12S">12s </A>
Fukuyama T.
Rahman MT.
Sato M.
Ryu I.
Synlett
2008,
151
<A NAME="RP00410ST-12T">12t </A>
Yoshida J.
Nagaki A.
Yamada T.
Chem. Eur.
J.
2008,
14:
7450
<A NAME="RP00410ST-12U">12u </A>
Shore G.
Morin S.
Mallik D.
Organ MG.
Chem. Eur. J.
2008,
14:
1351
<A NAME="RP00410ST-12V">12v </A>
Lin W.-Y.
Wang Y.
Wang S.
Tseng H.-R.
Nano Today
2009,
4:
470
<A NAME="RP00410ST-12W">12w </A>
McMullen JP.
Jensen KF.
Annu.
Rev. Anal. Chem.
2010,
3:
19
<A NAME="RP00410ST-12X">12x </A>
Yoshida J.
Chem.
Rec.
2010,
10:
332
<A NAME="RP00410ST-12Y">12y </A>
Yoshida J.
Kim H.
Nagaki A.
ChemSusChem
2011,
4:
331
<A NAME="RP00410ST-13">13 </A>
Integrated chemical synthesizer was
proposed by Bard in 1994. See: Bard, A. J. Integrated
Chemical Systems ; Wiley: New York, 1994 .
<A NAME="RP00410ST-14">14 </A>
The name of domino reaction was derived
from the game where one puts up several domino pieces in one row
and in agreement with the time-resolved succession of reactions, if
one knocks over the first domino, all the others follow without
changing the conditions. However, we should keep in mind that all
the molecules in a reaction vessel do not start the domino at once.
It is difficult to activate all reactant molecules coherently. The
molecules are activated indivi-dually and participate in the reaction
(and also domino sequence) at different times. Therefore, all the
reactions in the sequence take place simultaneously from a macroscopic point
of view. Therefore, reaction times (time required for converting
most of the reactant molecules) often range from minutes to hours,
although the time required for the reaction for a single molecule
is several hundred femtoseconds to picoseconds.
<A NAME="RP00410ST-15">15 </A>
Life times of radical intermediates
are usually much shorter than millisecond. Therefore, space integration
of radical reactions is practically impossible at present, although
there are many examples of time and space integration of radical reactions.
<A NAME="RP00410ST-16A">16a </A>
Shono T.
Hamaguchi H.
Matsumura Y.
J. Am. Chem. Soc.
1975,
97:
4264
<A NAME="RP00410ST-16B">16b </A>
Shono T.
Matsumura Y.
Tsubata K.
Org.
Synth.
1985,
63:
206
The oxidative methoxylation of amides has also been reported:
<A NAME="RP00410ST-16C">16c </A>
Ross S.
Finkelstein D.
Peterson RC.
J.
Am. Chem. Soc.
1966,
88:
4657
<A NAME="RP00410ST-16D">16d </A>
Nyberg K.
Servin R.
Acta Chem. Scand., Ser. B
1976,
30:
640
<A NAME="RP00410ST-16E">16e </A>
Moeller KD.
Tetrahedron
2000,
56:
9527
<A NAME="RP00410ST-17A">17a </A>
Yoshida J.
Suga S.
Suzuki S.
Kinomura N.
Yamamoto A.
Fujiwara K.
J. Am.
Chem. Soc.
1999,
121:
9546
<A NAME="RP00410ST-17B">17b </A>
Suga S.
Okajima M.
Yoshida J.
Tetrahedron Lett.
2001,
42:
2173
<A NAME="RP00410ST-17C">17c </A>
Suga S.
Suzuki S.
Yoshida J.
J.
Am. Chem. Soc.
2002,
124:
30
<A NAME="RP00410ST-17D">17d </A>
Suga S.
Watanabe M.
Yoshida J.
J.
Am. Chem. Soc.
2002,
124:
14824
<A NAME="RP00410ST-17E">17e </A>
Suga S.
Nagaki A.
Yoshida J.
Chem.
Commun.
2003,
354
<A NAME="RP00410ST-17F">17f </A>
Suga S.
Nagaki A.
Tsutsui Y.
Yoshida J.
Org. Lett.
2003,
5:
945
<A NAME="RP00410ST-17G">17g </A>
Suga S.
Kageyama Y.
Babu G.
Itami K.
Yoshida J.
Org.
Lett.
2004,
6:
2709
<A NAME="RP00410ST-17H">17h </A>
Suga S.
Suzuki S.
Maruyama T.
Yoshida J.
Bull. Chem. Soc. Jpn.
2004,
77:
1545
<A NAME="RP00410ST-17I">17i </A>
Nagaki A.
Kawamura K.
Suga S.
Ando T.
Sawamoto M.
Yoshida J.
J. Am. Chem. Soc.
2004,
126:
14702
<A NAME="RP00410ST-17J">17j </A>
Suga S.
Tsutsui Y.
Nagaki A.
Yoshida J.
Bull. Chem. Soc. Jpn.
2005,
78:
1206
<A NAME="RP00410ST-17K">17k </A>
Maruyama T.
Suga S.
Yoshida J.
J.
Am. Chem. Soc.
2005,
127:
7324
<A NAME="RP00410ST-17L">17l </A>
Nagaki A.
Togai M.
Suga S.
Aoki N.
Mae K.
Yoshida J.
J.
Am. Chem. Soc.
2005,
127:
11666
<A NAME="RP00410ST-17M">17m </A>
Maruyama T.
Suga S.
Yoshida J.
Tetrahedron
2006,
62:
6519
<A NAME="RP00410ST-17N">17n </A>
Suga S.
Watanabe M.
Song C.-H.
Yoshida J.
Electrochemistry
2006,
74:
672
<A NAME="RP00410ST-17O">17o </A>
Maruyama T.
Mizuno Y.
Shimizu I.
Suga S.
Yoshida J.
J.
Am. Chem. Soc.
2007,
129:
1902
<A NAME="RP00410ST-17P">17p </A>
Suga S.
Shimizu I.
Ashikari Y.
Mizuno Y.
Maruyama T.
Yoshida J.
Chem. Lett.
2008,
37:
1008
<A NAME="RP00410ST-17Q">17q </A>
Okajima M.
Soga K.
Nokami T.
Suga S.
Yoshida J.
Org. Lett.
2006,
8:
5005
<A NAME="RP00410ST-17R">17r </A>
Nokami T.
Ohata K.
Inoue M.
Tsuyama H.
Shibuya A.
Soga K.
Okajima M.
Suga S.
Yoshida J.
J. Am. Chem. Soc.
2008,
130:
10864
<A NAME="RP00410ST-17S">17s </A>
Nagaki A.
Iwasaki T.
Kawamura K.
Yamada D.
Suga S.
Ando T.
Sawamoto M.
Yoshida J.
Chem. Asian J.
2008,
3:
1558
<A NAME="RP00410ST-17T">17t </A>
Okajima M.
Soga K.
Watanabe T.
Terao K.
Nokami T.
Suga S.
Yoshida J.
Bull. Chem.
Soc. Jpn.
2009,
82:
594
<A NAME="RP00410ST-18">18 </A>
Suga S.
Okajima M.
Fujiwara K.
Yoshida J.
J. Am. Chem. Soc.
2001,
123:
7941
<A NAME="RP00410ST-19">19 </A>
Suga S.
Nishida T.
Yamada D.
Nagaki A.
Yoshida J.
J.
Am. Chem. Soc.
2004,
126:
14338
<A NAME="RP00410ST-20">20 </A>
Suga S.
Yamada D.
Yoshida J.
Chem.
Lett.
2010,
39:
404
Some recent examples:
<A NAME="RP00410ST-21A">21a </A>
Nagaki A.
Tomida Y.
Yoshida J.
Macromolecules
2008,
41:
6322
<A NAME="RP00410ST-21B">21b </A>
Nagaki A.
Takabayashi N.
Tomida Y.
Yoshida J.
Org. Lett.
2008,
10:
3937
<A NAME="RP00410ST-21C">21c </A>
Nagaki A.
Kim H.
Yoshida J.
Angew. Chem.
Int. Ed.
2008,
47:
7833
<A NAME="RP00410ST-21D">21d </A>
Nagaki A.
Takizawa E.
Yoshida J.
Chem.
Lett.
2009,
38:
486
<A NAME="RP00410ST-21E">21e </A>
Nagaki A.
Takabayashi N.
Tomida Y.
Yoshida J.
Beilstein J. Org. Chem.
2009,
5:
No. 16
<A NAME="RP00410ST-21F">21f </A>
Nagaki A.
Takizawa E.
Yoshida J.
J.
Am. Chem. Soc.
2009,
131:
1654
<A NAME="RP00410ST-21G">21g </A>
Tomida Y.
Nagaki A.
Yoshida J.
Org.
Lett.
2009,
11:
3614
<A NAME="RP00410ST-21H">21h </A>
Nagaki A.
Kim H.
Yoshida J.
Angew.
Chem. Int. Ed.
2009,
48:
8063
<A NAME="RP00410ST-21I">21i </A>
Nagaki A.
Tomida Y.
Miyazaki A.
Yoshida J.
Macromolecules
2009,
42:
4384
<A NAME="RP00410ST-21J">21j </A>
Nagaki A.
Takizawa E.
Yoshida J.
Chem.
Lett.
2009,
38:
1060
<A NAME="RP00410ST-21K">21k </A>
Nagaki A.
Kim H.
Matsuo C.
Yoshida J.
Org. Biomol. Chem.
2010,
8:
1212
<A NAME="RP00410ST-21L">21l </A>
Nagaki A.
Miyazaki A.
Yoshida J.
Macromolecules
2010,
43:
8424
<A NAME="RP00410ST-21M">21m </A>
Nagaki A.
Kim H.
Moriwaki Y.
Matsuo C.
Yoshida J.
Chem. Eur.
J.
2010,
16:
11167
<A NAME="RP00410ST-21N">21n </A>
Nagaki A.
Miyazaki A.
Tomida Y.
Yoshida J.
Chem. Eng. J.
2011,
167:
548
<A NAME="RP00410ST-22A">22a </A>
Usutani H.
Tomida Y.
Nagaki A.
Okamoto H.
Nokami T.
Yoshida J.
J.
Am. Chem. Soc.
2007,
129:
3047
<A NAME="RP00410ST-22B">22b </A>
Nagaki A.
Tomida Y.
Usutani H.
Kim H.
Takabayashi N.
Nokami T.
Okamoto H.
Yoshida J.
Chem. Asian J.
2007,
2:
1513
<A NAME="RP00410ST-23">23 </A>
Ushiogi Y.
Hase T.
Iinuma Y.
Takata A.
Yoshida J.
Chem. Commun.
2007,
2947
<A NAME="RP00410ST-24">24 </A>
Murahashi S.
Yamamura M.
Yanagisawa K.
Mita N.
Kondo K.
J.
Org. Chem.
1979,
44:
2408
<A NAME="RP00410ST-25">25 </A>
Nagaki A.
Kenmoku A.
Moriwaki Y.
Hayashi A.
Yoshida J.
Angew.
Chem. Int. Ed.
2010,
49:
7543
<A NAME="RP00410ST-26A">26a </A>
Baumann M.
Baxendale IR.
Ley SV.
Synlett
2008,
2111
<A NAME="RP00410ST-26B">26b </A>
Baumann M.
Baxendale IR.
Ley SV.
Nikbin N.
Smith CD.
Tierney JP.
Org.
Biomol. Chem.
2008,
6:
1577
<A NAME="RP00410ST-26C">26c </A>
Baumann M.
Baxendale IR.
Ley
SV.
Nikbin N.
Smith CD.
Org. Biomol. Chem.
2008,
6:
1587
<A NAME="RP00410ST-26D">26d </A>
Palmieri A.
Ley SV.
Polyzos A.
Ladlow M.
Baxendale IR.
Beilstein
J. Org. Chem.
2009,
5:
No.
23
<A NAME="RP00410ST-26E">26e </A>
Sedelmeier J.
Ley SV.
Baxendale IR.
Green Chem.
2009,
11:
683
<A NAME="RP00410ST-26F">26f </A>
Baxendale IR.
Ley SV.
Mansfield
AC.
Smith CD.
Angew.
Chem. Int. Ed.
2009,
48:
4017
<A NAME="RP00410ST-26G">26g </A>
Palmieri A.
Ley SV.
Hammond K.
Polyzos A.
Baxendale IR.
Tetrahedron
Lett.
2009,
50:
3287
<A NAME="RP00410ST-26H">26h </A>
Baumann M.
Baxendale IR.
Martin LJ.
Ley SV.
Tetrahedron
2009,
65:
6611
<A NAME="RP00410ST-26I">26i </A>
Hartman RL.
Jensen
KF.
Lab
Chip
2009,
9:
2495
<A NAME="RP00410ST-26J">26j </A>
Webb D.
Jamison TF.
Chem. Sci.
2010,
1:
675
<A NAME="RP00410ST-26K">26k </A>
Venturoni F.
Nikbin N.
Ley SV.
Baxendale IR.
Org. Biomol. Chem.
2010,
8:
1798
<A NAME="RP00410ST-26L">26l </A>
Carter CF.
Baxendale IR.
Pavey JB.
Ley SV.
Org.
Biomol. Chem.
2010,
8:
1588
<A NAME="RP00410ST-26M">26m </A>
Baxendale IR.
Schou SC.
Sedelmeier J.
Ley SV.
Chem.
Eur. J.
2010,
16:
89
<A NAME="RP00410ST-26N">26n </A>
Carter FC.
Baxendale IR.
O’Brien M.
Pavey JB.
Ley SV.
Org. Biomol. Chem.
2009,
7:
4594