Synlett 2011(11): 1626-1630  
DOI: 10.1055/s-0030-1260789
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Copper-Catalyzed Arylation of Arylboronic Acids with Aldehydes

Hanmei Zhenga, Jinchang Dinga,b, Jiuxi Chen*a, Miaochang Liua, Wenxia Gaoa, Huayue Wu*a
a College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China
Fax: +86(577)88368280; e-Mail: jiuxichen@wzu.edu.cn; e-Mail: huayuewu@wzu.edu.cn;
b Wenzhou Vocational & Technical College, Wenzhou 325035, P. R. of China
Further Information

Publication History

Received 1 February 2011
Publication Date:
15 June 2011 (online)

Abstract

A novel copper-catalyzed arylation of arylboronic acids with aldehydes under oxygen atmosphere was achieved in the presence of Cu(OTf)2 and Xantphos, affording diaryl ketone derivatives in moderate to good yields. The efficiency of this reaction was demonstrated by the compatibility with fluoro, bromo, chloro, nitro, ­methylsulfonyl, and trifluoromethyl groups.

    References and Notes

  • 1a Dieter RK. Tetrahedron  1999,  55:  4177 
  • 1b Lawrence NJ. J. Chem. Soc., Perkin Trans. 1  1998,  1739 
  • 2a Fürstner A. Voigtlander D. Schrader W. Giebel D. Org. Lett.  2001,  3:  417 
  • 2b Song CE. Shim WH. Roh EJ. Choi JH. Chem. Commun.  2000,  1695 
  • 2c Ross J. Xiao J. Green Chem.  2002,  4:  129 
  • 2d Gmouh S. Yang H. Vaultier M. Org. Lett.  2003,  5:  2219 
  • 2e Nara SJ. Harjani JR. Salunkhe MM. J. Org. Chem.  2001,  66:  8616 
  • 2f Fillion E. Fishlock D. Wilsily A. Goll JM. J. Org. Chem.  2005,  70:  1316 
  • 2g Gooßen LJ. Ghosh K. Angew. Chem. Int. Ed.  2001,  40:  3458 
  • 2h Sarvari MH. Sharghi H. J. Org. Chem.  2004,  69:  6953 
  • 3a Larock RC. Comprehensive Organic Transformations   Wiley-VCH; New York: 1988. 
  • 3b Groves JK. Chem. Soc. Rev.  1972,  1:  73 
  • 3c Goure WF. Wright ME. Davis PD. Labadie SS. Stille JK. J. Am. Chem. Soc.  1984,  106:  6417 
  • 3d Cho CS. Itotani K. Uemura SJ.
    J. Organomet. Chem.  1993,  433:  253 
  • 3e Knochel P. Yeh MCP. Berk SC. Talbert J. J. Org. Chem.  1988,  53:  2390 
  • 3f Posner GH. Whitten CE. McFarland PE. J. Am. Chem. Soc.  1972,  94:  5106 
  • 3g Karpov AS. Müller TJ. Org. Lett.  2003,  5:  3451 
  • 3h Kim SH. Rieke RD. J. Org. Chem.  2000,  65:  2322 
  • 3i Lee PH. Lee SW. Seomoon D. Org. Lett.  2003,  5:  4963 
  • 3j Larock RC. Lu Y. J. Org. Chem.  1993,  58:  2846 
  • 3k Duplais C. Bures F. Sapountzis I. Korn TJ. Cahiez G. Knochel P. Angew. Chem. Int. Ed.  2004,  43:  2968 
  • 3l Zhang Y. Rovis T. J. Am. Chem. Soc.  2004,  126:  15964 
  • 3m Wang XJ. Zhang L. Sun X. Xu Y. Krishnamurthy D. Senanayake CH. Org. Lett.  2005,  7:  5593 
  • 4 Xin BW. Zhang YH. Cheng K. Synthesis  2007,  1970 
  • 5a Xin BW. Zhang YH. Cheng K. J. Org. Chem.  2006,  71:  5725 
  • 5b Kakino R. Shimizu I. Yamamoto A. Bull. Chem. Soc. Jpn.  2001,  74:  371 
  • 5c Kakino R. Yasumi S. Shimizu I. Yamamoto A. Bull. Chem. Soc. Jpn.  2002,  75:  137 
  • 5d Kakino R. Narahashi H. Shimizu I. Yamamoto A. Bull. Chem. Soc. Jpn.  2002,  75:  1333 
  • 5e Kakino RI. Narahashi H. Shimizu I. Yamamoto A. Chem. Lett.  2001,  1242 
  • 5f Goossen LJ. Ghosh K. Eur. J. Org. Chem.  2002,  3254 
  • 5g Goossen LJ. Ghosh K. Chem. Commun.  2001,  2084 
  • 5h Goossen LJ. Winkel L. Doehring A. Ghosh K. Paetzold J. Synlett  2002,  1237 
  • 5i Wang D. Zhang Z. Org. Lett.  2003,  5:  4645 
  • 6 Tatamidani H. Kakiuchi F. Chatani N. Org. Lett.  2004,  6:  3597 
  • 7a Villalobos JM. Srogl J. Liebeskind LS. J. Am. Chem. Soc.  2007,  129:  15734 
  • 7b Yu Y. Liebeskind LS. J. Org. Chem.  2004,  69:  3554 
  • 7c Liebeskind LS. Srogl J. J. Am. Chem. Soc.  2000,  122:  11260 
  • 7d Zeysing B. Gosch C. Terfort A. Org. Lett.  2000,  2:  1843 
  • 8 Ishiyama T. Hartwig JF. J. Am. Chem. Soc.  2000,  122:  12043 
  • 9a Akemiya AT. Hartwig JF. J. Am. Chem. Soc.  2006,  128:  14800 
  • 9b Mora G. Darses S. Genet J.-P. Adv. Synth. Catal.  2007,  349:  1180 
  • 9c Imlinger N. Mayr M. Wang D. Wurst K. Buchmeiser MR. Adv. Synth. Catal.  2004,  346:  1836 
  • 9d Imlinger N. Wurst K. Buchmeiser MR. J. Organomet. Chem.  2005,  690:  4433 
  • 10 Huang YC. Majumdar KK. Cheng CH. J. Org. Chem.  2002,  67:  1682 
  • 11 Ko S. Kang B. Chang S. Angew. Chem. Int. Ed.  2005,  44:  455 
  • 12a Suzuki A. Acc. Chem. Res.  1982,  15:  178 
  • 12b Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 12c Suzuki A.
    J. Organomet. Chem.  1998,  576:  147 
  • 12d Darses S. Genet JP. Eur. J. Org. Chem.  2003,  4313 
  • 13a Zhao L. Lu X. Angew. Chem. Int. Ed.  2002,  41:  4343 
  • 13b Zhao BW. Lu XY. Org. Lett.  2006,  8:  5987 
  • 13c Zhao BW. Lu XY. Tetrahedron Lett.  2006,  47:  6765 
  • 13d Yu A. Li J. Cui M. Wu Y. Synlett  2007,  3063 
  • 13e Zhou C. Larock RC. J. Org. Chem.  2006,  71:  3551 
  • 13f Zhou C. Larock RC. J. Am. Chem. Soc.  2004,  126:  2302 
  • 14 Wong Y.-C. Parthasarathy K. Cheng C.-H. Org. Lett.  2010,  12:  1736 ; and references therein
  • 15 Pucheault M. Darses S. Genet JP. J. Am. Chem. Soc.  2004,  126:  15356 
  • 16 Qin CM. Chen JX. Wu HY. Cheng J. Zhang Q. Zuo B. Su WK. Ding JC. Tetrahedron Lett.  2008,  49:  1884 
  • 17 Weng F. Wang C. Xu B. Tetrahedron Lett.  2010,  51:  2593 
  • For representative reviews on copper-catalyzed reaction, see:
  • 18a Evano G. Blanchard N. Toumi M. Chem. Rev.  2008,  108:  3054 
  • 18b Kenichi Y. Kiyoshi T. Chem. Rev.  2008,  108:  2874 
  • 18c Olafs D. Hien-Quang D. Dmitry S. Acc. Chem. Res.  2009,  42:  1074 
  • 18d Alexakis A. Bäckvall JE. Krause N. Pàmies O. Diéguez M. Chem. Rev.  2008,  108:  2796 
  • 18e Stanley LM. Sibi MP. Chem. Rev.  2008,  108:  2887 
  • 18f Reymond S. Cossy J. Chem. Rev.  2008,  108:  5359 
  • 18g Ma D. Cai Q. Acc. Chem. Res.  2008,  41:  1450 
  • 19 Zheng HM. Zhang Q. Chen JX. Liu MC. Cheng SH. Ding JC. Wu HY. Su WK. J. Org. Chem.  2009,  74:  943 
  • 20a Qin CM. Wu HY. Cheng J. Chen XA. Liu MC. Zhang WW. Su WK. Ding JC. J. Org. Chem.  2007,  72:  4102 
  • 20b Zhang Q. Chen JX. Liu MC. Wu HY. Cheng J. Qin CM. Su WK. Ding JC. Synlett  2008,  935 
  • 20c Qin CM. Wu HY. Chen JX. Liu MC. Cheng J. Su WK. Ding JC. Org. Lett.  2008,  10:  1537 
  • 21a Braga AAC. Morgon NH. Ujaque G. Liedos A. Maseras F. J. Organomet. Chem.  2006,  691:  4459 
  • 21b Braga AAC. Morgon NH. Ujaque G. Maseras F. J. Am. Chem. Soc.  2005,  127:  9298 
  • 21c Barder TE. Walker SD. Martinelli JR. Buchwald SL. J. Am. Chem. Soc.  2005,  127:  4685 
  • 21d Littke AF. Fu GC. Angew. Chem. Int. Ed.  2002,  41:  4176 
22

General Procedure for the Synthesis of Diaryl Ketones Under nitrogen atmosphere, a Schlenk tube was charged with aldehyde (0.3 mmol), arylboronic acid (0.6 mmol), Cu(OTf)2 (10 mol%), Xantphos ligand (15 mol%), and KF˙2H2O (0.6 mmol) in toluene (2 mL) under ice-salt
(-20 ˚C). The mixture was stirred for 6 h at r.t. under nitrogen atmosphere. Then pass into the oxygen, the mixture was stirred for 0.5 h at r.t. and heated up to reflux temperature (about 120 ˚C) for 24 h under oxygen atmosphere. After the completion of the reaction, as monitored by TLC, the solvent was concentrated in vacuo, and the residue was purified by flash column chromatog-raphy on silica gel (300-400 mesh) with PE-EtOAc as eluent to give the desired product.
Naphthalen-2-yl(4-nitrophenyl)methanone (3ai, Table 3, Entry 9)
¹H NMR (300 MHz, CDCl3): δ = 7.57-7.69 (m, 2 H), 7.91-8.00 (m, 6 H), 8.23 (s, 1 H), 8.22-8.40 (m, 2 H). ¹³C NMR (125 MHz, CDCl3): δ = 123.6, 125.2, 127.2, 127.9, 128.8, 129.0, 129.5, 130.7, 132.1, 132.4, 133.5, 135.6, 143.2, 149.8, 194.8. ESI-MS: m/z (%) = 278 (100) [M + 1]+. Anal. Calcd for C17H11NO3: C, 73.64; H, 4.00. Found: C, 73.66; H, 4.05.
4-Methylsulfonylphenyl(4-tolyl)methanone (3db, Table 3, Entry 12)
¹H NMR (300 MHz, CDCl3): δ = (s, 3 H), 3.12 (s, 3 H), 7.32 (d, J = 8.1 Hz, 2 H), 7.71 (d, J = 8.1 Hz, 2 H), 7.93 (d, J = 8.4 Hz, 2 H), 8.06 (d, J = 8.4 Hz, 2 H). ¹³C NMR (125 MHz, CDCl3): δ = 21.7, 44.4, 127.4, 129.3, 130.3, 133.7, 142.7, 143.2, 144.5, 194.8. ESI-MS: m/z (%) = 275 (100) [M + 1]+. Anal. Calcd for C15H14O3S: C, 65.67; H, 5.14. Found: C, 65.82; H, 5.22.
2,6-Dinitrophenyl(4-tolyl)methanone (3hb, Table 3, Entry 16)
¹H NMR (300 MHz, CDCl3): δ = (s, 3 H), 7.29 (d, J = 8.1 Hz, 2 H), 7.63 (d, J = 8.1 Hz, 2 H), 7.70 (d, J = 8.1 Hz, 2 H), 8.62 (d, J = 8.1 Hz, 2 H), 9.08 (s, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 21.8, 120.1, 128.4, 129.6, 129.8, 130.3, 132.4, 141.7, 146.0, 146.0, 148.4, 190.9. MS (EI): m/z (%) = 287 (100) [M + 1]+. Anal. Calcd for C14H10N2O5: C, 58.74; H, 3.52. Found: C, 58.83; H, 3.63.