Subscribe to RSS
DOI: 10.1055/s-0030-1260792
Simple and Efficient Method for the Halogenation of Oxygenated Aromatic Compounds
Publication History
Publication Date:
15 June 2011 (online)

Abstract
An efficient and mild method for the chlorination and bromination of oxygenated aromatics, with good regioselectivity and excellent yields, using a combination of HX/H2O2/AcOH in petroleum ether is presented. The effect of ultrasound was investigated.
Key words
halogenation - phenols - heterocycles - hydrogen peroxide - hydrohalic acid
- 2 Ullmann’s Encyclopedia of Industrial Chemistry Electronic Release, 6th ed.: Wiley-VCH; Weinheim: 1998.
-
3a
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009 -
3b
Franzén R.Xu Y. Can. J. Chem. 2005, 83: 266 - 4
Ogata Y.Takag K.Kondo Y.Hsin SC.Woo WI.Chen FC. J. Chin. Chem. Soc. 1983, 30: 261 - 5
Smith K.Butters M. Tetrahedron Lett. 1988, 29: 1319 - 6
Leblanc JC. inventors; EP 196,260. - 7
Gnaim JM.Sheldon RA. Tetrahedron Lett. 1995, 36: 3893 - 8
Gnaim JM.Sheldon RA. Tetrahedron Lett. 2004, 45: 8471 - 9
Jacquesy J.Jouannetaud M.Makani S. J. Chem. Soc., Chem. Commun. 1980, 110 - 10
Coburn CE.Anderson DK.Swenton JS. J. Org. Chem. 1983, 48: 1455 - 11
Gnaim JM.Sheldon RA. Tetrahedron Lett. 2005, 46: 4465 - 12
Kim YH.Park MY.Yang SG. Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180: 1235 - 13
Barhate NB.Gajare AS.Wakharkar RD.Bedekar AV. Tetrahedron Lett. 1998, 39: 6349 - 14
Duan J.Zhang LH.Dolbier WR. Synlett 1999, 1245 - 15
Auerbach J.Weissman SA.Blacklock TJ. Tetrahedron Lett. 1993, 34: 931 - 16
Oberhauser T. J. Org. Chem. 1997, 62: 4504 - 17
Konishi H.Aritomi K.Okano T.Kijii J. Bull. Chem. Soc. Jpn. 1989, 62: 591 - 18
Paul V.Sudalai A.Daniel T.Srinivasan KV. Tetrahedron Lett. 1994, 35: 7055 - 19
Ganguly NC.De P.Dutta S. Synthesis 2005, 1103 - 20
Das B.Venkateswarlu K.Krishnahiah M.Holla H. Tetrahedron Lett. 2006, 47: 8693 - 21
Das B.Venkateswarlu K.Majhi A.Siddaiah V.Reddy KV. J. Mol. Catal. A: Chem. 2007, 267: 30 - 22
Bovonsombat P.Khanthapura P.Krause MM.Leykajarakul J. Tetrahedron Lett. 2008, 49: 7008 - 23
Chaudhuri SK.Roy S.Saha M.Bhar S. Synth. Commun. 2007, 37: 1381 - 24
Menini L.Parreira LA.Gusevskaya EV. Tetrahedron Lett. 2007, 48: 6401 - 25
Chiappe C.Leandri E.Pieraccini D. Chem. Commun. 2004, 2536 - 26
Viroopakshappa J.Jagannadham V. Indian J. Chem., Sect A: Inorg., Bio-inorg. Phys., Theor. Anal. Chem. 2004, 43: 532 - 27
Bovicelli P.Bernini R.Antonioletti R.Mincione E. Tetrahedron Lett. 2002, 43: 5563 - 28
Narender N.Sriniva P.Ramakrishna M.Kilkarmi SJ.Reghaven KV. Synth. Commun. 2002, 32: 2313 - 29
Tsoukala A.Liguori L.Occhipinti G.Bjørsvik H.-R. Tetrahedron Lett. 2009, 50: 831 - 30
Koini EN.Papazafiri P.Vassilopoulos A.Koufaki M.Horváth Z.Koncz I.Virág L.Papp GJ.Varró A.Calogeropoulou T. J. Med. Chem. 2009, 52: 2328 - 31
Koufaki M.Detsi A.Theodorou E.Kiziridi C.Calogeropoulou T.Vassilopoulos A.Kourounakis A.Rekka E.Kourounakis P.Gaitanaki C.Papazafiri P. Bioorg. Med. Chem. 2004, 12: 4835 - 32
Koufaki M.Calogeropoulou T.Rekka E.Chryselis M.Papazafiri P.Gaitanaki C.Makriyannis A. Bioorg. Med. Chem. 2003, 11: 5209 - 33
Krishna Mohan KVV.Narender N.Srinivasu P.Kulkarni SJ.Raghavan KV. Synth. Commun. 2004, 34: 2143 - 34
Narender N.Suresh Kumar Reddy K.Krishna Mohan KVV.Kulkarni SJ. Tetrahedron Lett. 2007, 48: 6124 - 35
Suresh Kumar Reddy K.Narender N.Rohitha CN.Kulkarni SJ. Synth. Commun. 2008, 38: 3894 - 36
Bhatkhande BS.Adhikari MV.Samant SD. Ultrason. Sonochem. 2002, 9: 31 - 37
Podgoršek A.Zupan M.Iskra J. Angew. Chem. Int. Ed. 2009, 48: 8424 - 40
Guy A.Lemaire M.Guette J.-P. Tetrahedron 1982, 38: 2347 - 41
Joseph AR.Kumbhar VB.Ranade AA.Paradkar MV. J. Chem. Res., Synop. 2007, 91 - 44
Zhang Y.-N.Zhong X.-G.Zheng Z.-P.Hu X.-D.Zuo J.-P.Hu L.-H. Bioorg. Med. Chem. 2007, 15: 988 - 47
Rosenau T.Adelwöhrer C.Kloser E.Mereiter K.Netscher T. Tetrahedron 2006, 62: 1772
References and Notes
New address: E. N. Koini and N. Avlonitis, School of Chemistry, University of Edinburgh, West Mains Rd, Edinburgh, EH9 3JJ, UK.
38
Method A
To
a solution/slurry of substrate (1 mmol) in PE (40-60,
10 mL) was added a mixture of AcOH (6.5 mmol), 30% H2O2 (6.5
mmol), and the appropriate amount of HCl (37%, Table
[¹]
), and the resulting mixture
was refluxed for 1-96 h until completion of the reaction
(cf. Table
[¹]
).
The reaction was cooled to r.t., diluted with EtOAc, the organic
layer was extracted with H2O and brine, dried over anhyd
Na2SO4, and filtered. The solvent was evaporated
in vacuo, and the residue was purified by flash column chromatography
(silica gel) using PE (40-60)-EtOAc as eluent
to afford the desired chlorinated compounds.
Method B
To a solution/slurry
of substrate (1 mmol) in PE (40-60, 50 mL) was added a
mixture of AcOH (6.5 mmol), 30% H2O2 (6.5
mmol), and the appropriate amount of HCl (37%) or HBr (48%,
Table
[¹]
), and the
resulting mixture was sonicated until completion of the reaction
(cf. Table
[¹]
).
The reaction mixture was diluted with EtOAc, the organic layer was extracted
with H2O and brine, dried over anhyd Na2SO4,
and filtered. The solvent was evaporated in vacuo, and the residue
was purified by flash column chromatography (silica gel) using PE
(40-60)-EtOAc as eluent to afford the desired chlorinated
compounds.
Method C
To
a solution/slurry of substrate (1 mmol) in PE (40-60,
50 mL) was added a mixture of AcOH (6.5 mmol), 30% H2O2 (6.5
mmol), and the appropriate amount of HBr (48%, cf. Table
[¹]
), and the resulting mixture
was stirred at r.t. until completion of the reaction (Table
[¹]
). The reaction mixture was
diluted with EtOAc, the organic layer was extracted with H2O
and brine, dried over anhyd Na2SO4, and filtered. The
solvent was evaporated in vacuo, and the residue was purified by
flash column chromatography (silica gel) using PE (40-60)-EtOAc
as eluent to afford the desired brominated compounds.
Compounds 1a-3a, 13a, and 14a are commercially available
42
Spectroscopic
Data for Compound 6a
¹H NMR (300
MHz, CDCl3): δ = 6.59 (s, 1 H), 4.02
(s, 2 H), 3.92 (s, 6 H).
Spectroscopic Data for Compound 12a ¹H NMR (300 MHz, CDCl3): δ = 3.72 (s, 3 H), 2.73 (t, J = 7.0 Hz, 2 H), 2.19 (s, 3 H), 2.06 (s, 3 H), 1.77 (t, J = 7.0 Hz, 2 H). 1.29 (s, 6 H). ¹³C NMR (75.5 MHz, CDCl3): δ = 148.5, 146.9, 129.3, 124.4, 124.1, 117.0, 72.6, 60.4, 32.5, 26.7, 21.5, 12.8, 11.9.
45
Spectroscopic
Data for Compound 16a
¹H NMR (300
MHz, CDCl3): δ = 9.64 (s, 1 H), 2.60
(s, 3 H), 2.46 (s, 3 H), 2.29 (s, 3 H). ¹³C
NMR (75.5 MHz, CDCl3):
δ = 150.4,
144.7, 135.5, 131.6, 125.4, 120.6, 22.0, 13.3.
Spectroscopic Data for Compound 17a ¹H NMR (300 MHz, CDCl3): δ = 8.38 (br s, 1 H), 4.54 (s, 2 H), 2.35 (s, 6 H), 2.21 (s, 3 H). ¹³C NMR (75.5 MHz, CDCl3): δ = 165.9, 141.1, 132.3, 124.0, 123.1, 121.2, 120.9, 67.0, 20.3, 17.2, 12.9.
48Spectroscopic Data for Compound 19a ¹H NMR (300 MHz, CDCl3): δ = 3.72 (s, 3 H), 2.72 (t, J = 7.0 Hz, 2 H), 2.24 (s, 3 H), 2.07 (s, 3 H), 1.78 (t, J = 7.0 Hz, 2 H), 1.29 (s, 6 H). ¹³C NMR (75.5 MHz, CDCl3): δ = 148.7, 147.9, 129.3, 124.9, 118.5, 116.4, 73.6, 60.3, 32.8, 26.6, 24.4, 13.1, 11.9.