Subscribe to RSS
DOI: 10.1055/s-0031-1273216
© Georg Thieme Verlag KG Stuttgart · New York
Clinical Evaluation of a Novel Population-Based Regression Analysis for Detecting Glaucomatous Visual Field Progression
Klinische Beurteilung einer neuen populationsbasierten Methode zur Erkennung von glaukomatösen GesichtsfeldveränderungenPublication History
received: 1.10.2010
accepted: 30.11.2010
Publication Date:
11 April 2011 (online)

Zusammenfassung
Hintergrund: Echte Gesichtsfeldveränderungen können durch die klinische Beurteilung, oder mithilfe einer Trendanalyse oder Ereignisanalyse von Fluktuationen unterschieden werden. Das Ziel dieser Arbeit war es, die klinische Beurteilung von Gesichtsfeldreihen mit einem neuen statistischen Verfahren (Octopus Field Analysis, OFA) zur Erkennung von signifikanten glaukombedingten Veränderungen im Laufe der Zeit zu vergleichen. Gleichzeitig wird die Leistungsfähigkeit der herkömmlichen Regressionsanalyse mit der neuen Methode verglichen. Patienten und Methoden: 240 Gesichtsfeldreihen von 240 Patienten mit mindestens 9 Untersuchungen wurden durch zwei erfahrene Untersucher bezüglich Stabilität oder Progression klassiert. Die Klassifikation diente als Grundlage und wurde mit folgenden statistischen Testverfahren verglichen: (a) t-Test global, (b) r-Test global, (c) Regressionsanalyse von 10 Gesichtsfeldclustern und (d) punktweise lineare Regressionsanalyse. Ergebnisse: 32,5 % der Gesichtsfelder wurden von den Untersuchern als progressiv eingestuft. Die Sensitivität und Spezifität waren für den r-Test 89,7 % respektive 92,0 %, und für den t-Test 73,1 % respektive 93,8 %. In der punktweisen linearen Regressionsanalyse war die Spezifität vergleichbar (89,5 versus 92 %), hingegen war die Sensitivität deutlich geringer (22,4 versus 89,7 %) für ein Signifikanzniveau von p = 0,01. Die Cluster-Trend-Analyse (p = 0,005) zeigte eine deutlich höhere Sensitivität für den r-Test (37,7 %) als für den t-Test (14,1 %) bei vergleichbarer Spezifität (88,3 versus 93,8 %). Bezüglich der Clusterverteilung waren die parazentralen Cluster und die superiornasalen Hemi-Gesichtfelder am meisten fortschreitend. Schlussfolgerungen: Die populationsbasierte Regressionsanalyse scheint eine Progression beim Glaukom eher zu erkennen als die Trendanalyse und vermeidet bei etwa gleicher Trefferquote verschiedene Nachteile der Ereignisanalyse. Sie erleichtert dank der automatischen Klassierung die Erfassung von glaukombedingten Gesichtsfeldveränderungen und gestattet mithilfe von Gesichtsfeldclustern eine verbesserte Visualisierung der Korrelation zwischen Funktion und Struktur.
Abstract
Background: The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. Patients and Methods: 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. Results: 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. Conclusions: The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF clusters.
Schlüsselwörter
Glaukom - Octopus Field Analysis - Progression - Gesichtsfeld
Key words
glaucoma - Octopus field analysis - progressive damage - visual field
References
- 1
Diaz-Aleman V T, Anton A, Rosa M G et al.
Detection of visual-field deterioration by Glaucoma Progression Analysis and Threshold
Noiseless Trend programs.
Br J Ophthalmol.
2009;
93
322-328
Reference Ris Wihthout Link
- 2
Viswanathan A C, Crabb D P, McNaught A I et al.
Interobserver agreement on visual field progression in glaucoma: a comparison of methods.
Br J Ophthalmol.
2003;
87
726-730
Reference Ris Wihthout Link
- 3
Werner E B, Bishop K I, Koelle de la J et al.
A comparison of experienced clinical observers and statistical tests in detection
of progressive visual field loss in glaucoma using automated perimetry.
Arch Ophthalmol.
1988;
106
619-623
Reference Ris Wihthout Link
- 4
Brusini P.
Monitoring glaucoma progression.
Prog Brain Research.
2008;
173
59-73
Reference Ris Wihthout Link
- 5
Brusini P, Tosoni C.
Staging of functional damage in glaucoma using frequency doubling technology.
J Glaucoma.
2003;
12
417-426
Reference Ris Wihthout Link
- 6
Giangiacomo A, Garway-Heath D, Caprioli J.
Diagnosing glaucoma progression: current practice and promising technologies.
Curr Opin Ophthal.
2006;
17
153-162
Reference Ris Wihthout Link
- 7
Mayama C, Araie M, Suzuki Y et al.
Statistical evaluation of the diagnostic accuracy of methods used to determine the
progression of visual field defects in glaucoma.
Ophthalmology.
2004;
111
2117-2125
Reference Ris Wihthout Link
- 8
Nouri-Mahdavi K, Brigatti L, Weitzman M et al.
Comparison of methods to detect visual field progression in glaucoma.
Ophthalmology.
1997;
104
1228-1236
Reference Ris Wihthout Link
- 9
Spry P G, Johnson C A.
Identification of progressive glaucomatous visual field loss.
Surv Ophthalmol.
2002;
47
158-173
Reference Ris Wihthout Link
- 10
Vesti E, Johnson C A, Chauhan B C.
Comparison of different methods for detecting glaucomatous visual field progression.
Invest Ophthalmol Vis Sci.
2003;
44
3873-3879
Reference Ris Wihthout Link
- 11
Heijl A, Leske M C, Bengtsson B et al.
Measuring visual field progression in the Early Manifest Glaucoma Trial.
Acta Ophthalmol Scand.
2003;
81
286-293
Reference Ris Wihthout Link
- 12 Manual Octopus Field Analyzer V 6.07.
Reference Ris Wihthout Link
- 13
Weber J, Krieglstein G K.
Graphical analysis of topographical trends (GATT) in automated perimetry.
Int Ophthalmol.
1989;
13
351-356
Reference Ris Wihthout Link
- 14
McNaught A I, Crabb D P, Fitzke F W et al.
Visual field progression: comparison of Humphrey Statpac2 and pointwise linear regression
analysis.
Graefe’s Arch Ophthalmol.
1996;
234
411-418
Reference Ris Wihthout Link
- 15
Viswanathan A C, Fitzke F W, Hitchings R A.
Early detection of visual field progression in glaucoma: a comparison of PROGRESSOR
and STATPAC 2.
Br J Ophthalmol.
1997;
81
1037-1042
Reference Ris Wihthout Link
- 16
Bengtsson B, Heijl A.
A visual field index for calculation of glaucoma rate of progression.
Am J Ophthalmol.
2008;
145
343-353
Reference Ris Wihthout Link
- 17
Monhart M, Bebie H, Buerki E.
Receiver operating characteristics of a novel method of visual field trend analysis.
Inv Ophthalmol Vis Sci.
2008;
49
E-Abstract 1154
Reference Ris Wihthout Link
- 18 Software (OFA) Version 2.4.2 Octopus, Field, Analysis.
Reference Ris Wihthout Link
- 19
Kovalska M, Grieshaber M C, Schotzau A.
Detection of visual field progression in glaucoma.
Klin Monatsbl Augenheilkd.
2008;
225
342-345
Reference Ris Wihthout Link
- 20 EyeSuite, Perimetry, 900 at Octopus. Manuals CD V 200 2009.
Reference Ris Wihthout Link
- 21
Smith S D, Katz J, Quigley H A.
Analysis of progressive change in automated visual fields in glaucoma.
Invest Ophthalmol Vis Sci.
1996;
37
1419-1428
Reference Ris Wihthout Link
- 22
Buerki E, Monhart M.
An update on Octopus perimetry.
Eur Ophthal Review.
2007;
12
20-22
Reference Ris Wihthout Link
- 23
Monhart M, Bebie H, Buerki E et al.
Calculation of the abnormal response area as an indicator of visual field changes.
Invest Ophthalmol Vis Sci.
2006;
47
E-Abstract 3987
Reference Ris Wihthout Link
- 24
Wilkins M R, Fitzke F W, Khaw P T.
Pointwise linear progression criteria and the detection of visual field change in
a glaucoma trial.
Eye (Lond).
2006;
20
98-106
Reference Ris Wihthout Link
- 25
Anton A, Yamagishi N, Zangwill L et al.
Mapping structural to functional damage in glaucoma with standard automated perimetry
and confocal scanning laser ophthalmoscopy.
Am J Ophthalmol.
1998;
125
436-446
Reference Ris Wihthout Link
- 26
Asman P, Heijl A.
Arcuate cluster analysis in glaucoma perimetry.
J Glaucoma.
1993;
2
13-20
Reference Ris Wihthout Link
- 27
Gardiner S K, Johnson C A, Cioffi G A.
Evaluation of the structure-function relationship in glaucoma.
Invest Ophthalmol Vis Sci.
2005;
46
3712-3717
Reference Ris Wihthout Link
- 28
Garway-Heath D F, Poinoosawmy D, Fitzke F W et al.
Mapping the visual field to the optic disc in normal tension glaucoma eyes.
Ophthalmology.
2000;
107
1809-1815
Reference Ris Wihthout Link
- 29
Junemann A G, Martus P, Wisse M et al.
Quantitative analysis of visual field and optic disk in glaucoma: retinal nerve fiber
bundle-associated analysis.
Graefe’s Arch Ophthalmol.
2000;
238
306-314
Reference Ris Wihthout Link
- 30
Mandava S, Zulauf M, Zeyen T et al.
An evaluation of clusters in the glaucomatous visual field.
Am J Ophthalmol.
1993;
116
684-691
Reference Ris Wihthout Link
- 31
Suzuki Y, Araie M, Ohashi Y.
Sectorization of the central 30 degrees visual field in glaucoma.
Ophthalmology.
1993;
100
69-75
Reference Ris Wihthout Link
- 32
Weber J, Ulrich H.
A perimetric nerve fiber bundle map.
Int Ophthalmol.
1991;
15
193-200
Reference Ris Wihthout Link
- 33
Wirtschafter J D, Becker W L, Howe J B et al.
Glaucoma visual field analysis by computed profile of nerve fiber function in optic
disc sectors.
Ophthalmology.
1982;
89
255-267
Reference Ris Wihthout Link
- 34
Asman P, Heijl A.
Glaucoma Hemifield Test. Automated visual field evaluation.
Arch Ophthalmol.
1992;
110
812-819
Reference Ris Wihthout Link
- 35
Bengtsson B, Lindgren A, Heijl A et al.
Perimetric probability maps to separate change caused by glaucoma from that caused
by cataract.
Acta Ophthalmol Scand.
1997;
75
184-188
Reference Ris Wihthout Link
- 36
Artes P H, Chauhan B C.
Longitudinal changes in the visual field and optic disc in glaucoma.
Progress Retinal Eye Research.
2005;
24
333-354
Reference Ris Wihthout Link
- 37
Artes P H, Nicolela M T, LeBlanc R P et al.
Visual field progression in glaucoma: total versus pattern deviation analyses.
Invest Ophthalmol Vis Sci.
2005;
46
4600-4606
Reference Ris Wihthout Link
- 38
Boden C, Blumenthal E Z, Pascual J et al.
Patterns of glaucomatous visual field progression identified by three progression
criteria.
Am J Ophthalmol.
2004;
138
1029-1036
Reference Ris Wihthout Link
- 39
Katz J.
A comparison of the pattern- and total deviation-based Glaucoma Change Probability
programs.
Invest Ophthalmol Vis Sci.
2000;
41
1012-1016
Reference Ris Wihthout Link
- 40
Manassakorn A, Nouri-Mahdavi K, Koucheki B et al.
Pointwise linear regression analysis for detection of visual field progression with
absolute versus corrected threshold sensitivities.
Invest Ophthalmol Vis Sci.
2006;
47
2896-2903
Reference Ris Wihthout Link
- 41
Lee A C, Sample P A, Blumenthal E Z et al.
Infrequent confirmation of visual field progression.
Ophthalmology.
2002;
109
1059-1065
Reference Ris Wihthout Link
- 42
Carrillo M M, Artes P H, Nicolela M T et al.
Effect of cataract extraction on the visual fields of patients with glaucoma.
Arch Ohthalmol.
2005;
123
929-932
Reference Ris Wihthout Link
- 43
Asman P, Wild J M, Heijl A.
Appearance of the pattern deviation map as a function of change in area of localized
field loss.
Invest Ophthalmol Vis Sci.
2004;
45
3099-3106
Reference Ris Wihthout Link
- 44
Drance S M.
Diffuse visual field loss in open-angle glaucoma.
Ophthalmology.
1991;
98
1533-1538
Reference Ris Wihthout Link
- 45
Henson D B, Artes P H, Chauhan B C.
Diffuse loss of sensitivity in early glaucoma.
Invest Ophthalmol Vis Sci.
1999;
40
3147-3151
Reference Ris Wihthout Link
- 46 Okuyama S, Takada S, Matsumoto C et al. Detection of local visual field deterioration in patients with diffuse imrpovement
using cluster trends analysis. 18th International Visual Field and Imaging Symposium (IPS). Nara Japan; 2008
Reference Ris Wihthout Link
- 47
Chauhan B C, Drance S M, Douglas G R.
The use of visual field indices in detecting changes in the visual field in glaucoma.
Invest Ophthalmol Vis Sci.
1990;
31
512-520
Reference Ris Wihthout Link
- 48
Nouri-Mahdavi K, Hoffman D, Ralli M et al.
Comparison of methods to predict visual field progression in glaucoma.
Arch Ophthalmol.
2007;
125
1176-1181
Reference Ris Wihthout Link
- 49 Asman P, Hejil A. Spatial correlations in cluster analysis for detection of glaucomatous field loss. In: Perimetry Update. Amsterdam: Kugler Publications; 1990 / 91: 317-318
Reference Ris Wihthout Link
- 50
Bagga H, Greenfield D S, Knighton R W.
Macular symmetry testing for glaucoma detection.
J Glaucoma.
2005;
14
358-363
Reference Ris Wihthout Link
- 51
Kanadani F N, Hood D C, Grippo T M et al.
Structural and functional assessment of the macular region in patients with glaucoma.
Br J Ophthalmol.
2006;
90
1393-1397
Reference Ris Wihthout Link
- 52
Tan O, Li G, Lu A T et al.
Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis.
Ophthalmology.
2008;
115
949-956
Reference Ris Wihthout Link
- 53
Heijl A, Bengtsson B, Chauhan B C et al.
A comparison of visual field progression criteria of 3 major glaucoma trials in early
manifest glaucoma trial patients.
Ophthalmology.
2008;
115
1557-1565
Reference Ris Wihthout Link
- 54
Spry P G, Johnson C A.
Senescent changes of the normal visual field: an age-old problem.
Optom Vis Sci.
2001;
78
436-441
Reference Ris Wihthout Link
- 55
Arnalich-Montiel F, Casas-Liera P, Muñoz-Negrete F J et al.
Performance of glaucoma progression analysis software in a glaucoma population.
Graefes Arch Clin Exp Ophthalmol.
2009;
247
391-397
. Epub 2008 Nov 4
Reference Ris Wihthout Link
- 56
Wesselink C, Heeg G P, Jansonius N M.
Glaucoma monitoring in a clinical setting: glaucoma progression analysis vs nonparametric
progression analysis in den Groningen Longitudinal Claucoma Study.
Arch Ophthalmol.
2009;
127
270-274
Reference Ris Wihthout Link
Matthias C. Grieshaber, MD, FEBO
University Hospital of Basel, Department of Ophthalmology
Mittlere Strasse 91
CH-4031 Basel, Switzerland
Phone: ++ 41/61/2 65 87 87
Fax: ++ 41/61/2 65 87 45
Email: mgrieshaber@uhbs.ch