Z Gastroenterol 2012; 50(1): 41-46
DOI: 10.1055/s-0031-1282040
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Personalisierte Hepatologie − Gegenwärtige Konzepte, Entwicklungen und Erwartungen im Postgenomzeitalter

Personalised Hepatology − Current Concepts, Developments and Expectations in the Post-Genome Era
A. Teufel
1   I. Medizinische Klinik und Poliklinik, Universitätsmedizin, Mainz, Germany
,
J. U. Marquardt
1   I. Medizinische Klinik und Poliklinik, Universitätsmedizin, Mainz, Germany
,
S. Dooley
2   Molekulare Hepatologie – Alkohol Assoziierte Erkrankungen, II. Medizinische Klinik, Universitätsklinikum, Mannheim, Germany
,
F. Lammert
3   Klinik für Innere Medizin II, Universitätsklinikum des Saarlandes, Homburg, Germany
,
P. R. Galle
1   I. Medizinische Klinik und Poliklinik, Universitätsmedizin, Mainz, Germany
› Author Affiliations
Further Information

Publication History

27 October 2011

02 December 2011

Publication Date:
05 January 2012 (online)

Zusammenfassung

Mit der Entschlüsselung des menschlichen Genoms im Rahmen des Humanen Genomprojekts sind individualisierte Ansätze eine realistische Perspektive für effektivere, nebenwirkungsärmere und ökonomisch sinnvollere Therapien. Eine entsprechende Erweiterung des Wissens zu grundlegenden Krankheitsprozesse und Therapieoptionen sowie Biomarkerindentifikation und -charakterisierung ist auch für chronische Lebererkrankungen mit der Hoffnung auf medizinischen Fortschritt verbunden. Vor diesem Hintergrund wird die Erstellung genetischer Fingerabdrücke für eine individualisierte Diagnose, Prognose und Behandlung von Patienten von zunehmender Bedeutung für die translationale Hepatologie. Für einzelne Lebererkrankungen existieren bereits personalisierte Therapieansätze. Beispiele sind die Bestimmung der Genotypen des HCV-Virus, Viruskinetik und die Genotypisierung des IL28B-Polymorphismus zur Optimierung der Behandlung der chronischen Hepatitis C. Die Herausforderungen der nächsten Jahre liegen in der Erarbeitung eines möglichst breiten Wissens, der Etablierung verlässlicher und standardisierter Technologien sowie der Entwicklung intelligenter bioinformatischer Strategien zur Datenanalyse und Datenintegration. Die folgende Übersicht fasst den derzeitigen Stand des Fortschritts der personalisierter Ansätze in der Hepatologie zusammen, erläutert aber auch technische Hintergründe der Limitationen, die eine konsequente klinische Umsetzung derzeit noch erschweren.

Abstract

Promoted by the decoding of the human genome as part of the human genome project, individualised therapy approaches have become a realistic perspective for therapies that are more effective, less prone to side effects and economically reasonable. This also applies to chronic liver disease. With the aim not only to expand the current knowledge base through basic research on the underlying disease processes and treatment options but also to identify and characterise biomarkers, the creation of genetic fingerprints for individualised diagnosis, prognosis and treatment of patients takes its place in the centre of translational hepatology. For certain liver diseases personalised therapy approaches are already existent. Examples are the determination of viral genotypes, viral kinetics and genotyping of the IL28B polymorphism to optimise the treatment of chronic hepatitis C. The challenges of the next few years relate to the broadening of the knowledge base, the establishment of reliable and standardised technologies, and the development of intelligent bioinformatics strategies for data analysis and data integration. The following review not only summarises the current state of progress and possibilities of personalised medicine in hepatological diseases, but also explains the technical background of the limitations that currently hinder a consistent clinical implementation.

 
  • Literatur

  • 1 Wang L, McLeod HL, Weinshilboum RM. Genomics and drug response. N Engl J Med 2011; 364: 1144-1153
  • 2 McDermott U, Downing JR, Stratton MR. Genomics and the continuum of cancer care. N Engl J Med 2011; 364: 340-350
  • 3 Hüssing B. Individualisierte Medizin und Gesundheitssystem. Büro für Technikfolgenabschätzung beim Deutschen Bundestag Arbeitsbericht. Nr 126 2008
  • 4 Hofmann WP, Zeuzem S. A new standard of care for the treatment of chronic HCV infection. Nat Rev Gastroenterol Hepatol 2011; 8: 257-264
  • 5 Ge D, Fellay J, Thompson AJ et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 2009; 461: 399-401
  • 6 Suppiah V, Moldovan M, Ahlenstiel G et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 2009; 41: 1100-1104
  • 7 Tanaka Y, Nishida N, Sugiyama M et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 2009; 41: 1105-1109
  • 8 Thompson AJ, Muir AJ, Sulkowski MS et al. Interleukin-28B polymorphism improves viral kinetics and is the strongest pretreatment predictor of sustained virologic response in genotype 1 hepatitis C virus. Gastroenterology 2010; 139: 120-129 e118
  • 9 Mangia A, Thompson AJ, Santoro R et al. An IL28B polymorphism determines treatment response of hepatitis C virus genotype 2 or 3 patients who do not achieve a rapid virologic response. Gastroenterology 2010; 139: 821-827, 827 e821
  • 10 Smith KR, Suppiah V, O'Connor K et al. Identification of improved IL28B SNPs and haplotypes for prediction of drug response in treatment of hepatitis C using massively parallel sequencing in a cross-sectional European cohort. Genome Med 2011; 3: 57
  • 11 Marcellin P, Liang J. A personalized approach to optimize hepatitis B treatment in treatment-naive patients. Antivir Ther 2010; 15 (Suppl. 03) 53-59
  • 12 Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53: 1020-1022
  • 13 Spangenberg HC, Thimme R, Blum HE. Serum markers of hepatocellular carcinoma. Semin Liver Dis 2006; 26: 385-390
  • 14 Marrero JA, Feng Z, Wang Y et al. Alpha-fetoprotein, des-gamma carboxyprothrombin, and lectin-bound alpha-fetoprotein in early hepatocellular carcinoma. Gastroenterology 2009; 137: 110-118
  • 15 Gamstatter T, Weinmann A, Schadmand-Fischer S et al. AFP Measurement in Monitoring Treatment Response of Advanced Hepatocellular Carcinoma to Sorafenib: Case Report and Review of the Literature. Onkologie 2011; 34: 538-542
  • 16 Chan SL, Mo FK, Johnson PJ et al. New utility of an old marker: serial alpha-fetoprotein measurement in predicting radiologic response and survival of patients with hepatocellular carcinoma undergoing systemic chemotherapy. J Clin Oncol 2009; 27: 446-452
  • 17 Riaz A, Ryu RK, Kulik LM et al. Alpha-fetoprotein response after locoregional therapy for hepatocellular carcinoma: oncologic marker of radiologic response, progression, and survival. J Clin Oncol 2009; 27: 5734-5742
  • 18 Yau T, Yao TJ, Chan P et al. The significance of early alpha-fetoprotein level changes in predicting clinical and survival benefits in advanced hepatocellular carcinoma patients receiving sorafenib. Oncologist 2011; 16: 1270-1279
  • 19 Marquardt JU, Galle PR, Teufel A. Molecular diagnosis and therapy of hepatocellular carcinoma (HCC): An emerging field for advanced technologies. J Hepatol 2011; Jul 23 [epub ahead of print]
  • 20 Honda M, Yamashita T, Ueda T et al. Different signaling pathways in the livers of patients with chronic hepatitis B or chronic hepatitis C. Hepatology 2006; 44: 1122-1138
  • 21 Younossi ZM, Baranova A, Afendy A et al. Early gene expression profiles of patients with chronic hepatitis C treated with pegylated interferon-alfa and ribavirin. Hepatology 2009; 49: 763-774
  • 22 Stegmann KA, Bjorkstrom NK, Veber H et al. Interferon-alpha-induced TRAIL on natural killer cells is associated with control of hepatitis C virus infection. Gastroenterology 2010; 138: 1885-1897
  • 23 Asselah T, Bieche I, Laurendeau I et al. Liver gene expression signature of mild fibrosis in patients with chronic hepatitis C. Gastroenterology 2005; 129: 2064-2075
  • 24 Huang H, Shiffman ML, Friedman S et al. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology 2007; 46: 297-306
  • 25 Marcolongo M, Young B, Dal Pero F et al. A seven-gene signature (cirrhosis risk score) predicts liver fibrosis progression in patients with initially mild chronic hepatitis C. Hepatology 2009; 50: 1038-1044
  • 26 Villanueva A, Hoshida Y, Battiston C et al. Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology 2011; 140: 1501-1512 e1502
  • 27 Breuhahn K, Gores G, Schirmacher P. Strategies for hepatocellular carcinoma therapy and diagnostics: lessons learned from high throughput and profiling approaches. Hepatology 2011; 53: 2112-2121
  • 28 Romeo S, Kozlitina J, Xing C et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40: 1461-1465
  • 29 Stickel F, Buch S, Lau K et al. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in caucasians. Hepatology 2011; 53: 86-95
  • 30 Hov JR, Keitel V, Laerdahl JK et al. Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS One 2010; 5: e12403
  • 31 Karlsen TH, Franke A, Melum E et al. Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology 2010; 138: 1102-1111
  • 32 Melum E, Franke A, Schramm C et al. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nat Genet 2011; 43: 17-19
  • 33 Wainfan E, Poirier LA. Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res 1992; 52: 2071s-2077s
  • 34 Feo F, Frau M, Tomasi ML et al. Genetic and epigenetic control of molecular alterations in hepatocellular carcinoma. Exp Biol Med (Maywood) 2009; 234: 726-736
  • 35 Gao W, Kondo Y, Shen L et al. Variable DNA methylation patterns associated with progression of disease in hepatocellular carcinomas. Carcinogenesis 2008; 29: 1901-1910
  • 36 Um TH, Kim H, Oh BK et al. Aberrant CpG island hypermethylation in dysplastic nodules and early HCC of hepatitis B virus-related human multistep hepatocarcinogenesis. J Hepatol 2011; 54: 939-947
  • 37 Tischoff I, Tannapfe A. DNA methylation in hepatocellular carcinoma. World J Gastroenterol 2008; 14: 1741-1748
  • 38 Calvisi DF, Ladu S, Gorden A et al. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 2007; 117: 2713-2722
  • 39 Stefanska B, Huang J, Bhattacharyya B et al. Definition of the landscape of promoter DNA hypomethylation in liver cancer. Cancer Res 2011; 71: 5891-5903
  • 40 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15-20
  • 41 Fornari F, Gramantieri L, Ferracin M et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 2008; 27: 5651-5661
  • 42 Pineau P, Volinia S, McJunkin K et al. miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A 2010; 107: 264-269
  • 43 Meng F, Henson R, Wehbe-Janek H et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133: 647-658
  • 44 Varnholt H, Drebber U, Schulze F et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 2008; 47: 1223-1232
  • 45 Xiong Y, Fang JH, Yun JP et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 2010; 51: 836-845
  • 46 Toffanin S, Hoshida Y, Lachenmayer A et al. MicroRNA-based classification of hepatocellular carcinoma and oncogenic role of miR-517a. Gastroenterology 2011; 140: 1618-1628 e1616
  • 47 Mott JL. MicroRNAs involved in tumor suppressor and oncogene pathways: implications for hepatobiliary neoplasia. Hepatology 2009; 50: 630-637
  • 48 McDermott AM, Heneghan HM, Miller N et al. The Therapeutic Potential of MicroRNAs: Disease Modulators and Drug Targets. Pharm Res 2011; 28: 3016-3029
  • 49 Llovet JM, Ricci S, Mazzaferro V et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378-390
  • 50 Lee JS, Heo J, Libbrecht L et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 2006; 12: 410-416