Subscribe to RSS
DOI: 10.1055/s-0031-1290316
Stereoselective Synthesis of vic-Halohydrins via l-tert-Leucine-Catalyzed syn-Selective Aldol Reaction
Publication History
Publication Date:
19 January 2012 (online)

Abstract
l-tert-Leucine was found to be an effective organocatalyst for the asymmetric aldol reaction of chloroacetone. The stereoselective synthesis of vic-halohydrins was accomplished with excellent regioselectivity (>99%) to generate α-chloro-β-hydroxy ketones with high syn selectivity (syn/anti = 16:1) and enantioselectivity (up to 95% ee).
Key words
aldol reaction - amino acids - asymmetric synthesis - chloroacetone - organocatalysis
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Lu C.Luo Z.Huang L.Li X. Tetrahedron: Asymmetry 2011, 22: 722Reference Ris Wihthout Link - 1b
Bloom JD.Dutia MD.Johnson BD.Wissner A.Burns MG.Largus EE.Dolan JA.Claus TH. J. Med. Chem. 1992, 35: 3081Reference Ris Wihthout Link - 1c
Corey EJ.Link JO. J. Org. Chem. 1991, 56: 442Reference Ris Wihthout Link - 2a
Chung JYL.Cvetovich R.Amato J.McWilliams JC.Reamer R.DiMichele L. J. Org. Chem. 2005, 70: 3592Reference Ris Wihthout Link - 2b
Draper J.Britton R. Org. Lett. 2010, 12: 4034Reference Ris Wihthout Link - 3
Yoshimitsu T.Nakatani R.Kobayashi A.Tanaka T. Org. Lett. 2011, 13: 908Reference Ris Wihthout Link - 4
Kang B.Britton R. Org. Lett. 2007, 9: 5083Reference Ris Wihthout Link - 5a
Stewart CA.VanderWerf CA. J. Am. Chem. Soc. 1954, 76: 1259Reference Ris Wihthout Link - 5b
Owen LN.Saharia GS. J. Chem. Soc. 1953, 2582Reference Ris Wihthout Link - 5c
Ranu BC.Banerjee S. J. Org. Chem. 2005, 70: 4517Reference Ris Wihthout Link - 5d
Yadav JS.Reddy BVS.Baishya G.Harshavardhan SJ.Chary CJ.Gupta MK. Tetrahedron Lett. 2005, 46: 3569Reference Ris Wihthout Link - 5e
Nishitani K.Shinyama K.Yamakawa K. Heterocycles 2007, 74: 191Reference Ris Wihthout Link - 5f
Neimi H.Moradian M. Polyhedron 2008, 27: 3639Reference Ris Wihthout Link - 5g
Pajkert R.Kolomeitsev AA.Milewska M.Röschenthaler G.-V.Koroniak H. Tetrahedron Lett. 2008, 49: 6046Reference Ris Wihthout Link - 6
Corey EJ.Helal CJ. Angew. Chem. Int. Ed. 1998, 37: 1986Reference Ris Wihthout Link - 7a
Ohkuma T.Tsutsumi K.Utsumi N.Arai N.Noyori R.Murata K. Org. Lett. 2007, 9: 255Reference Ris Wihthout Link - 7b
Bayston DJ.Travers CB.Polywka MEC. Tetrahedron: Asymmetry 1998, 9: 2015Reference Ris Wihthout Link - 7c
Cross DJ.Kenny JA.Houson I.Campbell L.Walsgrove T.Wills M. Tetrahedron: Asymmetry 2001, 12: 1801Reference Ris Wihthout Link - 7d
Morris DJ.Hayes AM.Wills M. J. Org. Chem. 2006, 71: 7035Reference Ris Wihthout Link - 8a
Hamada T.Torii T.Izawa K.Ikariya T. Tetrahedron 2004, 60: 7411Reference Ris Wihthout Link - 8b
Hamada T.Torii T.Izawa K.Noyori R.Ikariya T. Org. Lett. 2002, 4: 4373Reference Ris Wihthout Link - 8c
Matharu DS.Morris DJ.Kawamoto AM.Clarkson GJ.Wills M. Org. Lett. 2005, 7: 5489Reference Ris Wihthout Link - 9a
He L.Tang Z.Cun L.-F.Mi A.-Q.Jiang Y.-Z.Gong L.-Z. Tetrahedron 2006, 62: 346Reference Ris Wihthout Link - 9b
Guillena G.Hita MC.Nájera C. Tetrahedron: Asymmetry 2007, 18: 1272Reference Ris Wihthout Link - 9c
Sato K.Kuriyama M.Shimazawa R.Morimoto T.Kakiuchi K.Shirai R. Tetrahedron Lett. 2008, 49: 2402Reference Ris Wihthout Link - 9d
Russo A.Botta G.Lattanzi A. Tetrahedron 2007, 63: 11886Reference Ris Wihthout Link - 9e
Xu X.-Y.Wang Y.-Z.Gong L.-Z. Org. Lett. 2007, 9: 4247Reference Ris Wihthout Link - 10a
Machajewski TD.Wong C.-H. Angew. Chem. Int. Ed. 2000, 39: 1352Reference Ris Wihthout Link - 10b
Vogl HGEM.Shibasaki M. Chem. Eur. J. 1998, 4: 1137Reference Ris Wihthout Link - 10c
Nelson SG. Tetrahedron: Asymmetry 1998, 9: 357Reference Ris Wihthout Link - 10d
Guillena G.Nájera C.Ramón DJ. Tetrahedron: Asymmetry 2007, 18: 2249Reference Ris Wihthout Link - 10e
Mukherjee S.Yang JW.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471Reference Ris Wihthout Link - 12
Kanemitsu T.Umehara A.Miyazaki M.Nagata K.Itoh T. Eur. J. Org. Chem. 2011, 993Reference Ris Wihthout Link - 13a
Notz W.List B. J. Am. Chem. Soc. 2000, 122: 7386Reference Ris Wihthout Link - 13b
Sakthivel K.Notz W.Bui T.Barbas CF. J. Am. Chem. Soc. 2001, 123: 5260Reference Ris Wihthout Link - 13c
Córdova A.Notza W.Barbas CF. Chem. Commun. 2002, 3024Reference Ris Wihthout Link - 13d
Guillena G.Hita MC.Nájera C. Tetrahedron: Asymmetry 2006, 17: 1027Reference Ris Wihthout Link - 13e
Guillena GMC.Nájera C.Viózquez SF. Tetrahedron: Asymmetry 2007, 18: 2300Reference Ris Wihthout Link - 14a
Ramasastry SSV.Zhang H.Tanaka F.Barbas CF.. J. Am. Chem. Soc. 2007, 129: 288Reference Ris Wihthout Link - 14b
Ramasastry SSV.Albertshofer K.Utsumi N.Tanaka F.Barbas CF. Angew. Chem. Int. Ed. 2007, 46: 5572Reference Ris Wihthout Link - 14c
Wu X.Jiang Z.Shen HM.Lu Y. Adv. Synth. Catal. 2007, 349: 812Reference Ris Wihthout Link - 14d
Utsumi N.Imai M.Tanaka F.Ramasastry SSV.Barbas CF. Org. Lett. 2007, 9: 3445Reference Ris Wihthout Link - 14e
Da C S.Che LP.Guo QP.Wu FC.Ma X.Jia YN. J. Org. Chem. 2009, 74: 2541Reference Ris Wihthout Link - 14f
Larionova NA.Kucherenko AS.Siyutkin DE.Zlotin SG. Tetrahedron 2011, 67: 1948Reference Ris Wihthout Link - 14g
Wu X.Ma Z.Ye Z.Qian S.Zhao G. Adv. Synth. Catal. 2009, 351: 158Reference Ris Wihthout Link - 14h
Li J.Luo S.Cheng JP. J. Org. Chem. 2009, 74: 1747Reference Ris Wihthout Link - 15a
Banerjee R.Desiraju GR.Mondal R.Howard JAK. Chem. Eur. J. 2004, 10: 3373Reference Ris Wihthout Link - 15b
In this paper (ref. 15a), Howard and co-workers claimed that chlorine in organic compound is able to work as an intramolecular hydrogen bond acceptor. Their results support the proposed mechanism of our reaction system.
Reference Ris Wihthout Link
References and Notes
Optimized Procedure
for the Synthesis of 3a
To a mixture of chloroacetone
(1a, 400 µL, 5 mmol) and l-tert-leucine
(13 mg, 0.1 mmol), 4-nitrobenzaldehyde (2a,
76 mg, 0.5 mmol) was added, and the mixture was stirred at r.t. The
reaction was monitored by TLC analysis. After 7 d, H2O was
added and extracted with CH2Cl2 (3×),
dried over MgSO4, and concentrated in vacuo. To determine
the regioselectivity and the diastereomeric ratio, the remaining residue
was analyzed by ¹H NMR. Moreover, the ee value
of the product 3a was determined by chiral-phase
HPLC analysis of the residue. Then, the residue was purified by column
chromatography on silica gel in gradient elution with hexane-EtOAc
to give a 7:1 inseparable mixture of the desired products 3a and 4a (108
mg, 89%).
Analytical Data
for Compound 3a
¹H NMR (400 MHz,
CDCl3): δ = 8.24-8.20 (m,
2 H), 7.61-7.58 (m, 2 H), 5.47 (t, J = 3.6
Hz, 1 H), 4.46 (d, J = 3.2
Hz, 1 H), 3.43 (d, J = 4.0
Hz, 1 H), 2.40 (s, 3 H). ¹³C NMR (100 MHz,
CDCl3): δ = 203.4, 147.6, 146.2, 127.3,
123.5, 72.0, 67.3, 28.3. HPLC: 83% ee [Daicel
CHRALCEL OJ-H, hexane-iPrOH (9:1), flow rate 1.0 mL/min, λ = 254
nm]: t
R(major) = 34.7
min; t
R(minor) = 39.1
min.