References and Notes
<A NAME="RB60311ST-1">1</A>
Trofimov BA.
Shainyna BA.
In The
Chemistry of Sulfur-Containing Functional Groups
Patai S.
Rappoport Z.
John
Wiley and Sons;
Chichester:
1993.
p.659
<A NAME="RB60311ST-2">2</A>
Liu J.
Lam JVY.
Jim CKW.
Ng JCY.
Shi J.
Su H.
Yeung KF.
Hong Y.
Faisal M.
Yu Y.
Wong KS.
Tang BZ.
Macromolecules
2011,
44:
68
<A NAME="RB60311ST-3A">3a</A>
Sabarre A.
Love J.
Org.
Lett.
2008,
10:
3941
<A NAME="RB60311ST-3B">3b</A>
Wenkert E.
Shepard ME.
Mcphail AT.
J. Chem. Soc., Chem. Commun.
1986,
1390
<A NAME="RB60311ST-3C">3c</A>
Wenkert E.
Fernandes JB.
Michelotti EL.
Swindell CS.
Synthesis
1983,
701
<A NAME="RB60311ST-3D">3d</A>
Fiandanese V.
Harchese G.
Naso F.
Ronsini L.
Chem. Commun.
1982,
647
<A NAME="RB60311ST-3E">3e</A>
Venkert E.
Ferreira TW.
Michelotti EL.
Chem. Commun.
1979,
637
<A NAME="RB60311ST-3F">3f</A>
Okamura H.
Miura M.
Takei H.
Tetrahedron Lett.
1979,
43
<A NAME="RB60311ST-4A">4a</A>
Muraoka N.
Mineno M.
Itami K.
Yoshida J.
J.
Org. Chem.
2005,
70:
6933
<A NAME="RB60311ST-4B">4b</A>
Itami K.
Mineno M.
Muraoka N.
Yoshida J.
J. Am. Chem. Soc.
2004,
126:
11778
<A NAME="RB60311ST-4C">4c</A>
Mauleon P.
Nunez AA.
Alonso J.
Carretero JC.
Chem. Eur. J.
2003,
9:
1511
<A NAME="RB60311ST-4D">4d</A>
Trost BM.
Tanigawa Y.
J. Am.
Chem. Soc.
1979,
101:
4743
<A NAME="RB60311ST-5A">5a</A>
Singh PP.
Yadav AK.
Ita H.
Junjappa H.
J.
Org. Chem.
2009,
74:
5496
<A NAME="RB60311ST-5B">5b</A>
Serra S.
Fugnti C.
Moro A.
J.
Org. Chem.
2001,
66:
7883
<A NAME="RB60311ST-5C">5c</A>
McDoald FE.
Burova SA.
Huffman LG.
Synthesis
2000,
970
<A NAME="RB60311ST-5D">5d</A>
Yamazaki S.
Synth.
Org. Chem.
2000,
58:
50
<A NAME="RB60311ST-5E">5e</A>
Adrio J.
Carretero JC.
J. Am. Chem. Soc.
1999,
121:
7411
<A NAME="RB60311ST-5F">5f</A>
Bruckner R.
Huisgen R.
Tetrahedron Lett.
1990,
31:
2561
<A NAME="RB60311ST-5G">5g</A>
Singleton D.
Church KM.
J. Org. Chem.
1990,
55:
4780
<A NAME="RB60311ST-5H">5h</A>
Gupta RB.
Franck RW.
Onan KD.
Soll
CE.
J.
Org. Chem.
1989,
54:
1097
<A NAME="RB60311ST-6A">6a</A>
Trofimov BA.
Gusarova NK.
Malysheva SF.
Ivanova NI.
Sukhov BG.
Belogorlova NA.
Kuimov VA.
Synthesis
2002,
2207
<A NAME="RB60311ST-6B">6b</A>
Trofimov BA.
Gusarova NK.
Malysheva SF.
Sukhov BG.
Belogorlova NA.
Kuimov VA.
Al’pert ML.
Sulfur
Lett.
2003,
26:
63
<A NAME="RB60311ST-7">7</A>
Chen MS.
White MC.
J. Am. Chem. Soc.
2004,
126:
1346
<A NAME="RB60311ST-8">8</A>
Fernandez F.
Gomez M.
Jansat S.
Muller G.
Martin E.
Flores-Santos I.
Organometallics
2005,
24:
3946
<A NAME="RB60311ST-9">9</A>
Trost BM.
Lavoic AC.
J. Am. Chem. Soc.
1983,
105:
5075
<A NAME="RB60311ST-10">10</A>
Miller RD.
Hassing R.
Tetrahedron Lett.
1985,
26:
2395
<A NAME="RB60311ST-11A">11a</A>
Hunter R.
Kaschula CH.
Parker IM.
Caira MR.
Richards P.
Travis S.
Taute F.
Qwebani T.
Bioorg. Med. Chem. Lett.
2008,
18:
5277
<A NAME="RB60311ST-11B">11b</A>
Strebhardt K.
Ullrich A.
Nat. Rev. Cancer
2006,
6:
321
<A NAME="RB60311ST-11C">11c</A>
Gumireddy K.
Baker SJ.
Cosenza SC.
Premila J.
Kang AD.
Robell KA.
Proc.
Natl. Acad. Sci. U.S.A.
2005,
102:
1992
<A NAME="RB60311ST-11D">11d</A>
Muraoka N.
Mineno M.
Itami K.
Yoshida J.
J. Org. Chem.
2005,
70:
6933
<A NAME="RB60311ST-11E">11e</A>
Sharma VM.
Adi Seshu KV.
Sekhar VC.
Madan S.
Vishnu B.
Babu PA.
Krishna CV.
Sreenu J.
Krishna VR.
Venkateswarlu A.
Rajagopal S.
Ajaykumar R.
Kumar TS.
Bioorg. Med. Chem.
Lett.
2004,
14:
67
<A NAME="RB60311ST-11F">11f</A>
Sader HS.
Johnson DM.
Jones RN.
Antimicrob. Agents Chemother.
2004,
48:
53
<A NAME="RB60311ST-11G">11g</A>
Johannesson P.
Lindeberg G.
Johansson A.
Nikiforovich G.
Godoll A.
Synnergren B.
Le Greves M.
Nyberg F.
Karlen A.
Hallberg A.
J. Med. Chem.
2002,
45:
1767
<A NAME="RB60311ST-12A">12a</A>
Beletskaya IP.
Ananikov VP.
Chem. Rev.
2011,
111:
1596
<A NAME="RB60311ST-12B">12b</A>
Ananikov VP.
Zalesskiy SS.
Beletskaya IP.
Curr. Org. Chem.
2011,
8:
2
<A NAME="RB60311ST-12C">12c</A>
Bichler P.
Love J.
Top Organomet. Chem.
2010,
31:
39
<A NAME="RB60311ST-12D">12d</A>
Ide DM.
Eastlund MP.
Jupe CL.
Stockland RA.
Curr.
Org. Chem.
2008,
1270
<A NAME="RB60311ST-12E">12e</A>
Beller M.
Seayad J.
Tillack A.
Jiao H.
Angew. Chem. Int. Ed.
2004,
43:
3392
<A NAME="RB60311ST-12F">12f</A>
Kuniyasu H.
Kurosawa H.
Chem. Eur. J.
2002,
8:
2661
<A NAME="RB60311ST-12G">12g</A>
Ogawa A.
J.
Organomet. Chem.
2000,
611:
463
<A NAME="RB60311ST-12H">12h</A>
Kondo T.
Mitsudo T.
Chem. Rev.
2000,
3209
<A NAME="RB60311ST-12I">12i</A>
Ogawa A.
Ikeda T.
Kimura K.
Hirao T.
J. Am. Chem. Soc.
1999,
121:
5108
<A NAME="RB60311ST-12J">12j</A>
Weiss C.
Marks TJ.
J. Am. Chem. Soc.
2010,
132:
10533
<A NAME="RB60311ST-12K">12k</A>
Yang J.
Sabarre A.
Fraser LR.
Patrick BO.
Love J.
J.
Org. Chem.
2009,
74:
182
<A NAME="RB60311ST-12L">12l</A>
Kuniyasu H.
Ogawa A.
Sato K.-I.
Ryu I.
Kambe N.
Sonoda N.
J. Am. Chem. Soc.
1992,
114:
5902
<A NAME="RB60311ST-12M">12m</A>
Yang Y.
Rioux RM.
Chem. Commun.
2011,
47:
6557
<A NAME="RB60311ST-12N">12n</A>
Ranjit S.
Duan Z.
Zhang P.
Liu X.
Org. Lett.
2010,
12:
4134
<A NAME="RB60311ST-12O">12o</A>
Corma A.
Gonzalez-Arellano C.
Iglesias M.
Sanchez F.
Appl. Catal., A
2010,
375:
49
<A NAME="RB60311ST-12P">12p</A>
Field LD.
Messerle BA.
Vuong KQ.
Turner P.
Dalton
Trans.
2009,
3599
<A NAME="RB60311ST-12Q">12q</A>
Shoai S.
Bichler P.
Kang B.
Buckler H.
Love JA.
Organometallics
2007,
26:
5778
<A NAME="RB60311ST-12R">12r</A>
Burling S.
Field LD.
Messerle B.
Vuong KQ.
Turner P.
Dalton
Trans.
2003,
4181
<A NAME="RB60311ST-12S">12s</A>
Singer H.
Wilkinson G.
J. Chem. Soc. A
1968,
2516
<A NAME="RB60311ST-13A">13a</A>
Weiss CJ.
Marks TJ.
Organometallics
2010,
29:
6308
<A NAME="RB60311ST-13B">13b</A>
Weiss CJ.
Marks TJ.
Dalton
Trans.
2010,
6576
<A NAME="RB60311ST-13C">13c</A>
Eisen NS.
Top. Organomet. Chem.
2010,
31:
157
<A NAME="RB60311ST-13D">13d</A>
Weiss CJ.
Wobser SD.
Marks TJ.
J. Am. Chem. Soc.
2009,
131:
2062
<A NAME="RB60311ST-14A">14a</A>
O’Donnal JS.
Singh S.
Metcalf TA.
Schwan AL.
Eur. Org. Chem.
2009,
547
<A NAME="RB60311ST-14B">14b</A>
Perin G.
Mendes SR.
Silva MS.
Lenardo E.
Jacob RG.
Santos PC.
Synth. Commun.
2006,
36:
2587
<A NAME="RB60311ST-14C">14c</A>
Kondoh A.
Takami K.
Yorimitsu H.
Oshima K.
J. Org. Chem.
2005,
70:
6468
<A NAME="RB60311ST-14D">14d</A>
Perin G.
Jacob R.
Azambuja F.
Botteselb G.
Siqueira G.
Freitag R.
Lenardo E.
Tetrahedron
Lett.
2005,
46:
1679
<A NAME="RB60311ST-14E">14e</A>
Medel R.
Monterde MI.
Plumet J.
Rojas JK.
J. Org. Chem.
2005,
70:
735
<A NAME="RB60311ST-14F">14f</A>
Arjona O.
Medel R.
Rojas J.
Costa A.
Vilarrasa J.
Tetrahedron Lett.
2003,
44:
6369
<A NAME="RB60311ST-14G">14g</A>
Trofimov BA.
Curr. Org. Chem.
2002,
6:
11212
<A NAME="RB60311ST-14H">14h</A>
Carson JF.
Boggs LE.
J.
Org. Chem.
1967,
32:
673
<A NAME="RB60311ST-14I">14i</A>
Truce W.
Heine R.
J. Am. Chem. Soc.
1957,
79:
5311
<A NAME="RB60311ST-14J">14j</A>
Truce WE.
Simms JA.
J.
Am. Chem. Soc.
1956,
78:
2756
<A NAME="RB60311ST-15A">15a</A>
Minozzi M.
Monesi A.
Nanni D.
Spagnolo P.
Marchetti N.
Massi A.
J.
Org. Chem.
2011,
76:
450
<A NAME="RB60311ST-15B">15b</A>
Taniguchi T.
Fujii T.
Idota A.
Ishibashi H.
Org. Lett.
2009,
11:
3298
<A NAME="RB60311ST-15C">15c</A>
Sato A.
Yorimitsu H.
Oshima K.
Synlett
2009,
28
<A NAME="RB60311ST-15D">15d</A>
Bencivenni G.
Lanza T.
Leardini R.
Nanni D.
Spagnolo P.
Zanardi G.
Org. Lett.
2008,
10:
1127
<A NAME="RB60311ST-15E">15e</A>
Fernandez M.
Alonso R.
J. Org. Chem.
2006,
71:
6767
<A NAME="RB60311ST-15F">15f</A>
Beaufils F.
Denes F.
Renaud P.
Org.
Lett.
2004,
6:
2563
<A NAME="RB60311ST-15G">15g</A>
Fristad GK.
Jiang T.
Fioroni G.
Tetrahedron: Asymmetry
2003,
14:
2853
<A NAME="RB60311ST-15H">15h</A>
Yorimitsu H.
Wakabayashi K.
Shinokubo H.
Oshima K.
Bull. Chem. Soc. Jpn.
2001,
74:
1963
<A NAME="RB60311ST-15I">15i</A>
Nguyen VH.
Nishino H.
Kajikawa S.
Kurosawa K.
Tetrahedron
1998,
54:
11445
<A NAME="RB60311ST-15J">15j</A>
Benati L.
Capella L.
Montevecchi PC.
Spaglono P.
J. Org. Chem.
1995,
60:
7941
<A NAME="RB60311ST-15K">15k</A>
Yoshida J.
Nakatani S.
Isoe S.
J.
Org. Chem.
1993,
58:
4855
<A NAME="RB60311ST-15L">15l</A>
Benati L.
Montevecchi PS.
Spagnolo PJ.
J. Chem. Soc., Perkin Trans. 1
1991,
2103
<A NAME="RB60311ST-15M">15m</A>
Griesbaum K.
Angew.
Chem.
1970,
82:
285
<A NAME="RB60311ST-16A">16a</A>
Kabir MS.
Lorenz M.
Van Linn ML.
Namjoshi
OA.
Ara S.
Cook J.
J.
Org. Chem.
2010,
75:
3626
<A NAME="RB60311ST-16B">16b</A>
Taniguchi N.
Tetrahedron
2009,
65:
2782
<A NAME="RB60311ST-16C">16c</A>
Trostyanskaya IG.
Maslova EN.
Kazankova MA.
Beletskaya IP.
Russ. J. Org. Chem.
2008,
44:
32
<A NAME="RB60311ST-16D">16d</A>
Carril M.
SanMartin R.
Dominquez E.
Tellitu I.
Chem. Eur. J.
2007,
13:
5100
<A NAME="RB60311ST-16E">16e</A>
Beletskaya IP.
Cheprakov AV.
Coord.
Chem. Rev.
2004,
248:
2337
<A NAME="RB60311ST-16F">16f</A>
Bates CG.
Saejueng P.
Doherty MQ.
Venkataraman D.
Org.
Lett.
2004,
6:
5005
<A NAME="RB60311ST-16G">16g</A>
Kwong
FY.
Buchwald SL.
Org.
Lett.
2002,
4:
3517
<A NAME="RB60311ST-17">17</A>
Demchuk DV.
Lutsenko AI.
Troyanskii EI.
Nikishin GI.
Izv.
AN SSSR, Ser. Khim.
1990,
2801
<A NAME="RB60311ST-18">18</A>
Silveira CC.
Perin G.
Branga AL.
Jacob RG.
Tetrahedron
1999,
55:
7421
<A NAME="RB60311ST-19">19</A>
Guerrero PG.
Dabdoub MJ.
Marques FA.
Wosch CL.
Baroni ACM.
Ferreira AG.
Synth. Commun.
2008,
38:
4379
<A NAME="RB60311ST-20">20</A>
Fitt JJ.
Gschwend HW.
J. Org. Chem.
1979,
44:
303
<A NAME="RB60311ST-21">21</A>
Ritter RH.
Cohen T.
J. Am. Chem. Soc.
1986,
108:
3718
<A NAME="RB60311ST-22A">22a</A>
Murahashi S.-I.
Yamamura M.
Yanagisawa K.
Mita N.
Kondo K.
J. Org. Chem. Soc.
1979,
44:
2408
<A NAME="RB60311ST-22B">22b</A>
Huang X.
Zhong P.
Guo W.-R.
Org.
Prep. Proced. Int.
1999,
31:
201
<A NAME="RB60311ST-23A">23a</A>
Chu C.-M.
Tu Z.
Wu P.
Wang C.-C.
Liu J.-T.
Kuo C.-W.
Shin Y.-H.
Yao C.-F.
Tetrahedron
2009,
65:
3878
<A NAME="RB60311ST-23B">23b</A>
Benati L.
Capella L.
Montevecchi PC.
Spagnolo
PJ.
J. Org.
Chem.
1994,
59:
2818
<A NAME="RB60311ST-24">24</A>
The products 3a,
[¹²r]
[¹6f]
[¹9]
3c,
[²0]
3d,
[¹²r]
[²¹]
3b,
[¹5l]
[²²a]
[b]
3e,
[¹²q]
[¹4c]
[²³a]
[b]
3f,
[²³a]
3g,h,
[¹8]
3i,
[¹²i]
[¹5b]
[l]
[¹6b]
[¹7]
3k,
[¹5b]
[³¹]
were identified
according to published data. The Z/E isomeric ratio for 3i and 3k was determined by ¹H
NMR and ¹³C NMR spectroscopy.
<A NAME="RB60311ST-25">25</A>
Typical Experimental
Procedure for the CuI-Catalyzed Hydrothiolation of the Alkynes
To
a mixture of phenylacetylene (1a, 0.102
g, 1 mmol), CuI (0.006 g, 3 mol%) in DMF (0.5 mL) was added
HexSH (2c, 0.118 g, 1 mmol) under an argon
atmosphere, the mixture was stirred at 80 ˚C for
2 h and then evaporated under vacuum. The resulting oil was diluted
with CHCl3 and filtered. The filtrate was concentrated
and purified by column chromatography on silica gel (EtOAc-hexane,
5:95) to afford hexyl-(2-styryl)sulfide (3f,
[²³a]
0.198 g,
90%; Z/E = 15:1 by
NMR) as a colorless oil. ¹H NMR (400 MHz, CDCl3): δ (Z-isomer) = 7.46-7.15
(m, 5 H, Ph), 6,39 (d,
³
J
HH = 10.5 Hz, 1
H, PhCH=), 6.20 (d, ³
J
HH = 10.5
Hz, 1 H, =CHS), 2.72 (t, ³
J
HH = 7.4 Hz, 2 H,
CH2S), 1.65 (m, 2 H), 1.38 (m, 2 H), 1.28 (m, 4 H), 0.87
(t, 3 H, CH3); δ (E-isomer) = 7.34-7.16
(m, 5 H, Ph), 6.72 (d, ³
J
HH = 16.0
Hz, 1 H, PhCH=), 6.46 (d, ³
J
HH = 16.0 Hz, 1
H, =CHS), 2.79 (t,
³
J
HH = 7.4 Hz, 2 H,
CH2S), 1.69 (m, 2 H), 1.43 (m, 2 H), 1.31 (m, 4 H), 0.90
(t, 3 H, CH3). ¹³C NMR (100.6
MHz, CDCl3): δ (Z-isomer) = 136.94,
128.45, 128.02, 127.57, 126.55, 125.59, 35.80, 31.27, 30.10, 28.15,
22.43, 13.93; δ (E-isomer) = 136.98,
128.48, 128.05, 127.60, 126.35, 125.05, 32.52, 31,25, 29.23, 28.36,
22.41, 13.96.
<A NAME="RB60311ST-26">26</A>
(
E
)-
N
,
N
-Dimethyl-3-(phenylthio)-2-propenylamine (3c)
[²0]
¹H
NMR (400 MHz, CDCl3): δ = 7.22-7.50
(m, Ph), 6.39 (dt, ³
J
HH = 16.0
Hz, J
HH = 1.4 Hz,
1 H, =CHS), 5.87 (dt,
³
J
HH = 16.0 Hz, J
HH = 1.4 Hz, 1 H, =CHC),
3.23 (d, J
HH = 8.0 Hz,
2 H, CH2N), 2.36 (s, 6 H, CH3N). ¹³C
NMR (100.6 MHz, CDCl3): δ = 135.57,
128.93, 128.84, 128.11, 126.55, 126.36, 57.10, 44.91. Anal. Calcd
for C11H15NS: C, 68.37; H, 7.81; N, 7.25.
Found: C, 68.25; H, 8.00; N, 7.38.
<A NAME="RB60311ST-27">27</A>
3-(Phenylthio)prop-2-en-1-ol
(3d,
E/Z
= 5:1)
[¹²r]
[²¹]
E
-Isomer
¹H
NMR (400 MHz, CDCl3): δ = 7.20-7.49
(m, 5 H, Ph), 6.43 (dt, ³
J
HH = 14.0
Hz, J
HH = 1.4 Hz,
1 H, =CHS), 5.93 (dt, ³
J
HH = 1.4 Hz, 1 H, =CHC),
4.16 (d, ²
J
HH = 7.15
Hz, 2 H, H2CO), 2.15 (br s, 1 H, OH). ¹³C
NMR (100.6 MHz, CDCl3): δ = 132.99,
130.93, 129.96, 128.98, 127.36, 127.05, 63.07.
Z
-Isomer
¹H
NMR (400 MHz, CDCl3): δ = 7.20-7.49
(m, 5 H, Ph), 6.33 (dt, ³
J
HH = 8.0
Hz, J
HH = 1.2 Hz,
1 H, =CHS), 5.90-5.96 (m, 1 H, =CHC),
4.34 (d, ²
J
HH = 7.12
Hz, 2 H, H2CO), 2.13 (br s, 1 H, OH). ¹³C
NMR (100.6 MHz, CDCl3): δ = 136.88, 129.58,
129.04, 128.98, 127.36, 126.91, 59.65. Anal. Calcd. for C9H10OS:
C, 65.06; H, 6.02. Found: C, 65.26; H, 6.19.
<A NAME="RB60311ST-28">28</A>
(
Z
)-3-(2-Styrylthio)propanethiol
(3g)
[¹8]
¹H NMR (400 MHz, CDCI3): δ = 7.19-7.48
(m 5 H, Ph), 6.44 (dd, ³
J
HH = 10.8
Hz, 1 H, =CHPh), 6.17 (dd, ³
J
HH = 10.8 Hz, 1
H, =CHS), 2.84-2.93 (m, 2 H, =CSCH2),
2.57-2.63 (m, 2 H, H2CSH), 1.82-1.97
(m, 2 H, CCH2C), 1.34 (t,
³
J
HH = 7.0 Hz, 1 H,
SH). ¹³C NMR (100.6 MHz, CDCI3): δ = 137.20,
129.16, 128.66, 128.25, 126.91 126.74, 41.61, 30.60, 25.64.
<A NAME="RB60311ST-29">29</A>
2-Benzyl-1,3-dithiane
(3h)
[¹7]
¹H NMR (400 MHz, CDCI3): δ = 7.25-7.31
(m, 5 H, Ph), 4.25 (t, 1 H, SCH2S), 2.94 (d, 2 H, H2CPh),
2.73 (m, 4 H, SCH2C), 2.05 (m, 1 H), 1.88 (m, 1 H). ¹³C
NMR (100.6 MHz, CDCI3): δ = 137.20,
129.16, 128.25, 126.91, 48.82, 41.59, 30.60, 25.60.
<A NAME="RB60311ST-30">30</A>
1-Phenyl-2-(phenylthio)propene
(3i,
[¹²i]
[¹5b]
[l]
[¹6b]
[¹8]
Z
/
E
= 5:1)
¹H
NMR (400 MHz, CDCl3): δ = 7.15-7.55
(21 H, m), 6.69 (1 H, s, Z form), 2.12
(3 H, s, E form, 0.17), 2.01 (3 H, s, Z form, 0.83). ¹³C
NMR (100.6 MHz, CDCl3): δ (Z) = 136.72, 133.50,
131.98, 131.57, 130.79, 128.98, 128.82, 127.96, 127.12, 126.91,
25.55; δ (E) = 137.04,
133.83, 131.96, 131.41, 130.69, 129.03, 128.62, 128.21, 127.33,
126.69, 19.49.
<A NAME="RB60311ST-31">31</A>
(
Z
)-1,2-Diphenyl-1-(phenylthio)ethene
(3k)
[¹5b]
¹H NMR (400 MHz, CDCl3): δ = 7.72
(1 H, d, J = 7.6
Hz), 7.62 (1 H, d, J = 7.8
Hz), 6.92-7.52 (13 H, m), 6.79 (1 H, s). ¹³C
NMR (100.6 MHz, CDCl3): δ = 140.83,
137.86, 136.64, 135.64, 134.56, 132.25, 129.74, 129.44, 129.00,
128.58, 128.10, 127.95, 127.36, 125.73.
<A NAME="RB60311ST-32">32</A>
Typical Procedure
for the Thermal and CuI-Catalyzed
Z
- to
E
-Isomerization of Alkenyl Sulfides
In
each of two Schlenk tubes under argon atmosphere were placed phenyl-(2-styryl)sulfide
(Z/E = 2.4:1,
0.106 g, 0.5 mmol). In one of the Schlenk tubes were added thiophenol (2a, 0.055 g, 0.05 mmol), and CuI (0.006
g, 3 mol%). Both tubes were heated at 85 ˚C.
The changes of the Z/E ratio was inspected by ¹H
NMR spectroscopy. After 4 h without PhSH and CuI the ratio was Z/E = 1.8:1,
with CuI and thiol only 100% E-isomer 3a was observed (Table
[³]
, entry 1).