Synlett 2012; 23(10): 1505-1510
DOI: 10.1055/s-0031-1290682
letter
© Georg Thieme Verlag Stuttgart · New York

Chemoselective Suzuki–Miyaura Coupling of Bromophenyl-Substituted Bromoallenes with Arylboronic Acids

Xin Du
a   School of Chemistry, Dalian University of Technology, Western Campus, No.2 Linggong Road, Dalian 116023, P. R. of China
,
Xuesong Liu
a   School of Chemistry, Dalian University of Technology, Western Campus, No.2 Linggong Road, Dalian 116023, P. R. of China
,
Liang Xu*
a   School of Chemistry, Dalian University of Technology, Western Campus, No.2 Linggong Road, Dalian 116023, P. R. of China
,
Wenfeng Jiang*
a   School of Chemistry, Dalian University of Technology, Western Campus, No.2 Linggong Road, Dalian 116023, P. R. of China
,
Ming Bao
b   State Key Laboratory of Fine Chemicals, Dalian University of Technology, Western Campus, No.2 Linggong Road, Dalian 116023, P. R. of China, Email: xuliang@dlut.edu.cn   Email: jiangwf@dlut.edu.cn
,
Ren He
b   State Key Laboratory of Fine Chemicals, Dalian University of Technology, Western Campus, No.2 Linggong Road, Dalian 116023, P. R. of China, Email: xuliang@dlut.edu.cn   Email: jiangwf@dlut.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 24 February 2012

Accepted after revision: 05 April 2012

Publication Date:
29 May 2012 (online)


Abstract

Developing highly chemoselective Suzuki–Miyaura coupling reactions is of great value in the synthetic chemistry. Here we report the results of palladium-catalyzed reaction of bromoallenes containing an aryl bromide moiety with arylboronic acids. It is found that the C–Br insertion exclusively takes place on bromoallene rather than on the benzene ring. Theoretical calculations demonstrate that the corresponding oxidative addition intermediate has a much lower free energy.

 
  • References


    • For recent reviews on Suzuki–Miyaura cross-coupling reaction, see:
    • 1a Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
    • 1b Polshettwar V, Decottignies A, Len C, Fihri A. ChemSusChem 2010; 3: 502
    • 1c Doucet H. Eur. J. Org. Chem. 2008; 2013
    • 1d Alonso F, Beletskaya IP, Yus M. Tetrahedron 2008; 64: 3047
    • 1e Molander GA, Ellis N. Acc. Chem. Res. 2007; 40: 275
    • 1f Suzuki A. Chem. Commun. 2005; 38: 4759
    • 1g Suzuki A. Proc. Japan Acad., Ser. B 2004; 80: 359
    • 1h Kotha S, Lahiri K, Kashinath D. Tetrahedron 2002; 58: 9633

      For recent reviews on highly selective Suzuki cross-coupling reaction, see:
    • 2a Rossi R, Bellina F, Lessi M. Tetrahedron 2011; 67: 6969
    • 2b Schroter S, Stock C, Bach T. Tetrahedron 2005; 61: 2245
    • 2c Wang J.-R, Manabe K. Synthesis 2009; 1405

      For selected recent references, see:
    • 3a Ullah E, McNulty J, Robertson A. Tetrahedron Lett. 2009; 50: 5599
    • 3b Sawai K, Tatumi R, Nakahodo T, Fujihara H. Angew. Chem. Int. Ed. 2008; 47: 6917
    • 3c Fleckenstein CA, Plenio H. Green Chem. 2007; 9: 1287
    • 3d Wawrzyniak P, Heinicke J. Tetrahedron Lett. 2006; 47: 8921
    • 4a Saalfrank RW, Haubner M, Deutscher C, Bauer W, Clark T. J. Org. Chem. 1999; 64: 6166
    • 4b Liu PH, Li L, Webb JA, Zhang Y, Goroff NS. Org. Lett. 2004; 6: 2081
    • 4c Gillmann T, Weeber T. Synlett 1994; 649
    • 4d Du X, Feng XJ, Liu Y, He R, Bao M. Chin. Chem. Lett. 2010; 21: 641
  • 5 Salman GA, Mahal A, Shkoor M, Hussain M, Villinger A, Langer P. Tetrahedron Lett. 2011; 52: 392
  • 6 Salman G, Hussain M, Villinger A, Langer P. Synlett 2010; 3031
  • 7 Niphakis MJ, Georg GI. Org. Lett. 2011; 13: 196
  • 8 Lima CF. R. A. C, Rodriguez-Borges JE, Santos LM. N. B. F. Tetrahedron 2011; 67: 689
  • 9 Jepsen TH, Larsen M, Jørgensen M, Solanko KA, Bond AD, Kadziola A, Nielsen MB. Eur. J. Org. Chem. 2011; 53
  • 10 Akravi OA, Hussain M, Langer P. Tetrahedron Lett. 2011; 52: 1093
  • 11 Mohamed YM. A, Hansen TV. Tetrahedron Lett. 2011; 52: 1057
  • 12 Zhang H, Zhou C.-B, Chen Q.-Y, Xiao J.-C, Hong R. Org. Lett. 2011; 13: 560
  • 13 Endo K, Ohkubo T. Org. Lett. 2011; 13: 3368
  • 14 Littke AF, Dai CY, Fu GC. J. Am. Chem. Soc. 2000; 122: 4020
    • 15a Guo M.-P, Jian F.-F, He R. J. Fluorine Chem. 2006; 127: 177
    • 15b Guo M.-P, Jian F.-F, He R. Tetrahedron Lett. 2006; 47: 2033
    • 15c Guo M.-P, Jian F.-F, He R. Tetrahedron Lett. 2005; 46: 9017
  • 16 General Procedure for the Suzuki Reaction A mixture of bromoallene (1.0 mmol), arylboronic acid (1.5 mmol), K3PO4·3H2O (798.9 mg, 3.0 mmol) and Pd(Ph2PCH2CO2)2 (17.8 mg, 3 mol%) in of THF–H2O (v/v = 1:1, 3 mL) was stirred at r.t. under nitrogen atmosphere for 6 h. The product was extracted with Et2O (5 × 5 mL), and the combined organic layer was dried over MgSO4. Then the solvent was removed under reduced pressure, and the crude product was purified by silica gel column chromatography (eluent: hexane) to afford desired pure product. 1H NMR and 13C NMR spectra were recorded in CDCl3 solution on a Varian Inova-400 spectrometer (1H: 400 MHz; 13C: 100 MHz). The chemical shifts are reported in ppm downfield from TMS. IR spectra were recorded on a NEXUS FTIR spectrometer. HRMS spectra were recorded on a Q-TOF mass spectrometry (Micromass, England) equipped with Z-spray ionization source. TLC was carried out on SiO2 (silica gel 60 F254, Merck). Flash chroma-tography was carried out on SiO2 (silica gel 60, 200–300 mesh). 1-Bromo-4-(3-bromohepta-1,2-dienyl)-benzene (1a) was synthesized following the procedure described in ref. 17. Free energy calculations were carried out using the Gaussian09 program (Frisch, M. J. et al. Gaussian 09, revision A.01). The geometry of each structure was first optimized by density functional theory B3LYP method. The basis set of 6-31+G (d) was used for C, N, and Br atoms, while Pd was described by LANL2DZ basis set and an effective core potential (ECP) employed. Frequency calculations were then performed on each optimized structure, and no imaginary frequency was found, indicating that the stationary point of each structure was minima in the energy surface. Spectral Data for New Compounds 1-Bromo-4-(3-phenylhepta-1,2-dienyl)benzene (3a) Colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.18–7.60 (m, 9 H, ArH), 6.46 (s, 1 H, H–=·=), 2.27–2.57 (m, 2 H, CH2), 1.47–1.59 (m, 2 H, CH2), 1.39–1.45 (m, 2 H, CH2), 0.91 (t, J = 7.2 Hz, 3 H, CH3). 13C NMR (100 MHz, CDCl3): δ = 206.8, 136.0, 133.9, 132.0, 132.0, 128.7, 128.7, 128.4, 128.4, 127.4, 126.3, 126.3, 120.7, 110.7, 97.2, 30.2, 30.0, 22.8, 14.1. IR (neat): ν = 3059, 2956, 2927, 2858, 1933, 1596, 1486, 1070, 1009, 844, 692 cm–1. HRMS (EI): m/z calcd for C19H19Br: 326.0670 [M]+; found: 326.0669. 1-Bromo-4-(3-p-tolylhepta-1,2-dienyl)benzene (3b) Colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.41 (d, J = 8.4 Hz, 2 H, ArH), 7.31(d, J = 8.0 Hz, 2 H, ArH), 7.19(d, J = 8.4 Hz, 2 H, ArH), 7.13 (d, J = 8.0 Hz, 2 H, ArH), 6.44 (s, 1 H, H–=·=), 2.51–2.56 (m, 2 H, CH2), 2.33 (s, 3 H, CH3), 1.53–1.59 (m, 2 H, CH2), 1.39–1.44 (m, 2 H, CH2), 0.91 (t, J = 7.6 Hz, 3 H, CH3). 13C NMR (100 MHz, CDCl3): δ = 206.5, 137.0, 134.0, 132.8, 131.8, 131.8, 129.3, 129.3, 128.2, 128.2, 126.0, 126.0, 120.5, 110.3, 96.9, 30.1, 29.9, 22.6, 21.1, 13.9. IR (neat): ν = 2956, 2923, 2857, 1927, 1647, 1487, 1070, 1010, 846 cm–1. HRMS (EI): m/z calcd for C20H21Br: 340.0827 [M]+; found: 340.0823. 1-Bromo-4-[3-(4-fluorophenyl)hepta-1,2-dienyl]benzene (3c) Colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.36–7.41 (m, 4 H, ArH), 7.17–7.19 (m, 2 H, ArH), 6.98–7.03 (m, 2 H, ArH), 6.46 (br s, 1 H, H–=·=), 2.51–2.54 (m, 2 H, CH2), 1.55–1.56 (m, 2 H, CH2), 1.41–1.43 (m, 2 H, CH2), 0.91 (t, J = 7.2 Hz, 3 H, CH3). 13C NMR (100 MHz, CDCl3): δ = 206.4, 162.1 (d, J = 246.0 Hz), 133.6, 133.6, 131.8, 131.8, 128.2, 128.2, 127.6 (d, J = 8.0 Hz), 127.6 (d, J = 8.0 Hz), 115.4 (d, J = 22.0 Hz), 115.4 (d, J = 22.0 Hz), 109.7, 97.2, 30.2, 30.2, 22.6, 14.0. IR (neat): ν = 2955, 2927, 2858, 1932, 1600, 1507, 1486, 1230, 1158, 1070, 1009, 845, 835 cm–1. HRMS (EI): m/z calcd for C19H18FBr: 344.0576 [M]+; found: 344.0564. 1-Bromo-4-(3-phenylocta-1,2-dienyl)-benzene (3d) 1H NMR (400 MHz, CDCl3): δ = 7.41–7.43 (m, 4 H, ArH), 7.30–7.34 (m, 2 H, ArH), 7.19–7.24 (m, 3 H, ArH), 6.50 (s, 1 H, H–=·=), 2.50–2.51 (m, 2 H, CH2), 1.50–1.52 (m, 2 H, CH2), 1.25–1.42 (m, 4 H, CH2CH2), 0.86 (t, J = 7.6 Hz, 3 H, CH3). 13C NMR (400 MHz, CDCl3): δ = 206.7, 135.9, 133.8, 131.8, 131.8, 128.6, 128.6, 128.3, 128.3, 127.2, 126.1, 126.1, 120.6, 110.5, 97.1, 31.8, 30.1, 27.6, 22.5, 14.1. IR (neat): ν = 2950, 2926, 2861, 1925, 1481, 1070, 1014, 8525, 6912 cm–1. HRMS (EI): m/z calcd for C20H21Br: 340.0815 [M]+; found: 340.0827. 1-Bromo-4-(3-p-tolylocta-1,2-dienyl)benzene (3e) Colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.41 (d, J = 6.6 Hz, 2 H, ArH), 7.31 (d, J = 8.0 Hz, 2 H, ArH), 7.19 (d, J = 6.6 Hz, 2 H, ArH), 7.13 (d, J = 8.0 Hz, 2 H, ArH), 6.45 (s, 1 H, H–=·=), 2.50–2.56 (m, 2 H, CH2), 2.33 (s, 3 H, CH3), 1.53–1.60 (m, 2 H, CH2), 1.28–1.39 (m, 4 H, CH2CH2), 0.86 (t, J = 7.1 Hz, 3 H, CH3). 13C NMR (100 MHz, CDCl3): δ = 206.5, 137.0, 134.0, 132.8, 131.7, 131.7, 129.3, 129.3, 128.2, 128.2, 126.0, 126.0, 120.5, 110.3, 96.9, 31.7,30.1, 27.6, 22.5, 21.1, 14.1. IR (neat): ν = 2957, 2923, 2850, 1927, 1524, 1476, 1073, 998, 844, 811 cm–1. HRMS (EI): m/z calcd for C21H23Br: 354.0975 [M]+; found: 354.0983. 1-Bromo-4-[3-(4-fluorophenyl)octa-1,2-dienyl]benzene (3f) Colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.36–7.47 (m, 4 H, ArH), 6.98–7.20 (m, 4 H, ArH), 6.46 (t, J = 3.2 Hz, 1 H, H–=·=), 2.49–2.54 (m, 2 H, CH2), 1.53–1.60 (m, 2 H, CH2), 1.28–1.39 (m, 4 H, CH2CH2), 0.86 (t, J = 7.1 Hz, 3 H, CH3). 13C NMR (100 MHz, CDCl3): δ = 206.4, 162.2 (d, J = 245.0 Hz), 131.8, 131.8, 131.7, 131.7, 128.6, 128.6, 127.7 (d, J = 8.0 Hz), 127.7 (d, J = 8.0 Hz), 120.7, 115.3 (d, J = 21.0 Hz), 115.3 (d, J = 21.0 Hz), 109.7, 97.2, 31.7, 30.2, 27.5, 22.5, 14.1. IR (neat): ν = 2957, 2923, 2856, 1927, 1597, 1509, 1228, 1012, 830 cm–1. HRMS (EI): m/z calcd for C20H20BrF: 358.0732 [M]+; found: 357.0659 [M – H]+. 1-Bromo-2-(3-phenylhepta-1,2-dienyl)-benzene (3g) 1H NMR (400 MHz, CDCl3): δ = 7.31–7.46 (m, 6 H, ArH), 7.19–7.23 (m, 2 H, ArH), 7.03–7.07 (m, 1 H, ArH), 6.98 (t, J = 2.8 Hz, 1 H, H–=·=), 2.54–2.59 (m, 2 H, CH2), 1.54–1.62 (m, 2 H, CH2),1.41–1.46 (m, 2 H, CH2), 0.92 (t, J = 8.0 Hz, 3 H, CH3). 13C NMR (100 MHz, CDCl3): δ = 207.6, 135.8, 134.1, 133.2, 128.6, 128.6, 128.3, 128.3, 127.5, 127.2, 126.2, 126.2, 122.6, 110.3, 96.7, 30.1, 29.8, 22.7, 14.0. IR (neat): ν = 3059, 2953, 2914, 2860, 1936, 1509, 1476, 1432, 1004, 821, 745, 685 cm–1. HRMS (EI): m/z calcd for C19H19Br: 326.0667 [M]+; found: 326.0670. 1-Bromo-2-(3-p-tolylhepta-1,2-dienyl)benzene (3h) 1H NMR (400 MHz, CDCl3): δ = 7.32–7.55 (m, 4 H, ArH), 7.13–7.22 (m, 3 H, ArH), 7.02–7.06 (m, 1 H, ArH), 6.95 (t, J = 2.8 Hz, 1 H, H–=·=), 2.52–2.56 (m, 2 H, CH2), 2.33 (s, 3 H, CH3), 1.54–1.60 (m, 2 H, CH2), 1.38–1.45 (m, 2 H, CH2), 0.92 (t, J = 7.6 Hz, 3 H, CH3). 13C NMR (100 MHz, CDCl3): δ = 207.6, 137.1, 134.3, 133.3, 132.8, 129.4, 128.4, 128.4, 128.3, 127.6, 126.2, 126.2, 122.7, 110.3, 96.9, 30.2, 29.9, 22.8, 21.3, 14.1. IR (neat): ν = 3020, 2966, 2925, 2849, 1933, 1516, 1468, 1010, 813, 737, 662 cm–1. HRMS (EI): m/z calcd for C20H21Br: 340.0829 [M]+; found: 340.0827. 1-Bromo-2-[3-(4-fluorophenyl)hepta-1,2-dienyl]benzene (3i) 1H NMR (400 MHz, CDCl3): δ = 7.55 (m, 1 H, ArH), 7.38–7.44 (m, 3 H, ArH), 7.19–7.24 (m, 1 H, ArH), 6.99–7.07 (m, 3 H, ArH), 6.97 (t, J = 3.0 Hz, 1 H, H–=·=), 2.51–2.56 (m, 2 H, CH2), 1.53–1.64 (m, 2 H, CH2), 1.38–1.47 (m, 2 H, CH2), 0.92 (t, J = 7.2 Hz, 3 H, CH3). 13C NMR (400 MHz, CDCl3): δ = 207.4, 162.2 (d, J = 245 Hz), 134.1, 133.4, 131.9, 128.5, 128.4, 127.8 (d, J = 8 Hz), 127.8 (d, J = 8 Hz), 127.7, 122.7, 115.6 (d, J = 10 Hz), 115.6 (d, J = 10 Hz), 109.6, 97.2, 30.2, 27.1, 22.8, 14.1. IR (neat): ν = 3055, 2959, 2918, 2856, 1926, 1605, 1509, 1462, 1168, 1017, 840, 737, 593 cm–1. HRMS (EI): m/z calcd for C19H18FBr: 344.0570 [M]+; found: 344.0576. Compounds 3j,k The products are difficult to purify, and the 1HNMR data are very complicated, only the typical signal of =·=–H (δ = 6.90, s, 1 H) and ≡–CArHn-Bu (δ = 6.10, s ,1 H) could be assigned
  • 17 Du X, Dai Y, He R, Lu S, Bao M. Synth. Commun. 2009; 39: 3940