Synlett, Table of Contents Synlett 2012; 23(8): 1213-1216DOI: 10.1055/s-0031-1290803 letter © Georg Thieme Verlag Stuttgart · New YorkStereoselective Total Syntheses of Insect Juvenile Hormones JH 0 and JH I Atsushi Manabe Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan, Fax: +81(6)66053153 Email: shinada@sci.osaka-cu.ac.jp Email: ohfune@sci.osaka-cu.ac.jp , Yasufumi Ohfune* Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan, Fax: +81(6)66053153 Email: shinada@sci.osaka-cu.ac.jp Email: ohfune@sci.osaka-cu.ac.jp , Tetsuro Shinada* Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan, Fax: +81(6)66053153 Email: shinada@sci.osaka-cu.ac.jp Email: ohfune@sci.osaka-cu.ac.jp› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Abstract Total syntheses of juvenile hormones JH 0 and JH I have been achieved by a new iterative enol tosylate homologation strategy. Key words Key wordsjuvenile hormone - acyclic terpenoid - enol tosylate - Negishi coupling reaction Full Text References References and Notes 1a Riddiford LM. J. Insect Phys. 2008; 54: 895 1b Davey K. J. Insect Phys. 2007; 53: 208 2 Wigglesworth VB. Comprehensive Insect Physiology, Biochemistry and Pharmacology . Vol. 7. Kerkut GA, Gilbert LI. Pergamon Press; Oxford: 1985: 1-24 3a Röller H, Dahm KH, Sweely CC, Trost BM. Angew. Chem., Int. Ed. Engl. 1967; 6: 179 3b Trost BM. Acc. Chem. Res. 1970; 3: 120 4a Morgan ED, Wilson ID. Mori K. Comprehensive Natural Products Chemistry,. In Miscellaneous Natural Products Including Marine Natural Products, Pheromones, Plant Hormones, and Aspects of Ecology. Vol. 8. Barton DH. R, Nakanishi K. Pergamon Press; Oxford: 1999: 263-369 4b Kotaki T, Shinada T, Kaihara K, Ohfune Y, Numata H. Org. Lett. 2009; 11: 5234 5a Okochi T, Mori K. Eur. J. Org. Chem. 2001; 2145 5b Kosugi H, Kanno O, Uda H. Tetrahedron: Asymmetry 1994; 5: 1139 5c Mori K, Fujiwhara M. Liebigs Ann. Chem. 1990; 369 5d Mori K, Fujiwhara M. Liebigs Ann. Chem. 1989; 41 5e Mori K, Fujiwhara M. Tetrahedron 1988; 44: 343 5f Fujisawa T, Sato T, Gotoh Y, Kawashima M, Kawara T. Bull. Chem. Soc. Jpn. 1982; 55: 3555 5g Mukaiyama T, Toda H, Kobayashi S. Chem. Lett. 1975; 535 5h Anderson RJ, Corbin VL, Cotterrell G, Cox GR, Henrick CA, Schaub F, Siddall JB. J. Am. Chem. Soc. 1975; 97: 1197 5i Kobayashi S, Mukaiyama T. Chem. Lett. 1974; 1425 5j Tanaka S, Yamamoto H, Nozaki H, Sharpless KB, Michaelson RC, Cutting JD. J. Am. Chem. Soc. 1974; 96: 5254 5k Stotter PL, Hornish RE. J. Am. Chem. Soc. 1973; 95: 4444 5l Faulkner DJ, Petersen MR. J. Am. Chem. Soc. 1973; 95: 553 5m Henrick CA, Schaub F, Siddall JB. J. Am. Chem. Soc. 1972; 94: 5374 5n Anderson RJ, Henrick CA, Siddall JB. J. Org. Chem. 1972; 37: 1266 5o Faulkner DJ, Petersen MR. J. Am. Chem. Soc. 1971; 93: 3766 5p Corey EJ, Yamamoto H. J. Am. Chem. Soc. 1970; 92: 6637 5q Corey EJ, Yamamoto H. J. Am. Chem. Soc. 1970; 92: 6636 5r Corey EJ, Yamamoto H, Herron DK, Achiwa K. J. Am. Chem. Soc. 1970; 92: 6635 5s Johnson WS, Brocksom TJ, Loew P, Rich DH, Werthemann L, Arnold RA, Li T, Faulkner DJ. J. Am. Chem. Soc. 1970; 92: 4463 5t Van Tamelen EE, McCormick JP. J. Am. Chem. Soc. 1970; 92: 737 5u Loew P, Siddall JB, Spain VL, Werthemann L. Proc. Natl. Acad. Sci. U.S.A. 1970; 67: 1462 5v Johnson WS, Li T, Faulkner DJ, Campbell SF. J. Am. Chem. Soc. 1968; 90: 6225 5w Zurflueh R, Wall EN, Siddall JB, Edwards JA. J. Am. Chem. Soc. 1968; 90: 6224 5x Dahm KH, Roeller H, Trost BM. Life Sci. 1968; 7: 129 5y Dahm KH, Trost BM, Roeller H. J. Am. Chem. Soc. 1967; 89: 5292 6 Crispino GA, Sharpless KB. Synthesis 1993; 777 7a Sakurai S, Ohtaki T, Mori H, Fujiwhara M, Mori K. Experientia 1990; 46: 220 7b Kindle H, Winistörfer M, Lanzrein B, Mori K. Experientia 1989; 45: 356 8a Rawat DS, Gibbs RA. Org. Lett. 2002; 4: 3027 8b Jin Y, Roberts FG, Coates RM. Org. Synth. 2007; 84: 43 9 (Z)-24 was transformed into the corresponding bromide A by a series of sequential transformations: i) the Negishi cross-coupling reaction of with Et2Zn in the presence of 10 mol% of Pd(PPh3)4, ii) reduction to the corresponding allylic alcohol, and iii) bromination to the allyl borimide A. However, it was found to be volatile and easily evaporated under the reduced pressure to lower the product yield (ca. 30%) 10a Nishikado H, Nakatsuji H, Ueno K, Nagase R, Tanabe Y. Synlett 2010; 2087 10b Nakatsuji H, Ueno K, Misaki T, Tanabe Y. Org. Lett. 2008; 10: 2131 10c Nishikado H, Nakatsuji H, Ueno K, Nagase R, Tanabe Y. Synlett 2010; 2087 11 Babinski D, Soltani O, Frantz DE. Org. Lett. 2008; 10: 2901 12 The olefin geometry was confirmed by NOE experiments of the synthetic JH 0 and JH I (see Supporting Information) The use of the unactivated enol tosylate in the cross-coupling reaction has been discussed, see: 13a Lindhardt AT, Gøgsig TM, Skrydstrup T. J. Org. Chem. 2009; 74: 135 13b Limmert ME, Roy AH, Hartwig JF. J. Org. Chem. 2005; 70: 9364 13c Gelman D, Buchwald SL. Angew. Chem. Int. Ed. 2003; 115: 6175 14 The optical purity was confirmed by the total synthesis of JH 0 and JH I, and comparison of the optical rotations of the synthetic natural products with those of authentic data shown in below 15 Analytical Data of JH 0 (1): [α]D 18 +13.4 (c 0.8, MeOH) [lit. 5d [α]D + 13.8 (c 0.92, MeOH)]. 1H NMR (400 MHz, CDCl3): δ = 5.61 (s, 1 H), 5.10 (br, 1 H), 3.68 (s, 3 H), 2.71 (dd, J = 6.6, 5.6 Hz, 1 H), 2.18–2.03 (m, 10 H), 1.63–1.48 (m, 4 H), 1.27 (s, 3 H), 1.07 (t, J = 7.6 Hz, 3 H), 1.00 (t, J = 7.6 Hz, 3 H), 0.96 (t, J = 7.6 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 166.8, 165.7, 141.2, 123.1, 114.5, 64.6, 61.8, 50.7, 38.1, 33.3, 27.2, 25.8, 25.7, 25.3, 23.2, 21.6, 13.1, 12.9, 9.6. IR (neat): 2970, 2353, 1720, 1644, 1461, 1209, 1149, 761 cm–1. HRMS–FAB: m/z calcd for C19H33O3 [M + H]+: 309.2430; found: 309.2421 16 Analytical Data of JH I (2): [α]D 18 +14.4 (c 0.98, MeOH) [lit.5a,e [α]D 22.5 +14.5 (c 0.78, MeOH)]. 1H NMR (400 MHz, CDCl3): δ = 5.66 (d, J = 0.6 Hz 1 H), 5.08 (t, J = 6.3 Hz, 1 H), 3.68 (s, 3 H), 2.71 (dd, J = 7.2, 6.0 Hz, 1 H), 2.18–2.03 (m, 8 H), 2.16 (d, J = 0.6 Hz, 3 H), 1.63–1.48 (m, 4 H), 1.27 (s, 3 H), 0.99 (t, J = 7.2 Hz 3 H), 0.97 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.2, 159.9, 141.3, 122.9, 115.3, 64.6, 61.8, 50.8, 41.1, 33.3, 27.2, 25.8, 25.6, 23.1, 21.6, 18.8, 13.1, 9.7. IR (neat): 2968, 2360, 1720, 1650, 1457, 1125, 1149, 770 cm–1. HRMS–FAB: m/z calcd for C18H31O3 [M + H]+: 295.2273; found: 295.2270 Supplementary Material Supplementary Material Supporting Information