Synlett 2012; 23(13): 1985-1989
DOI: 10.1055/s-0032-1316549
letter
© Georg Thieme Verlag Stuttgart · New York

An Ugi-Type Condensation of α-Isocyanoacetamide and Chiral Cyclic Imine under a New Catalytic System

Sheng Li
a   Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China
,
Ruijiao Chen
a   Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China
,
Xiubing Liu
a   Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China
,
Li Pan
a   Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China
,
Liang Xia
a   Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China
,
Xiaochuan Chen*
a   Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China
b   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China, Fax: +86(28)85413712   Email: chenxc@scu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 25 April 2012

Accepted after revision: 24 May 2012

Publication Date:
04 July 2012 (online)


Abstract

A new catalytic Ugi-type condensation of α-isocyanoacetamide and chiral cyclic imine is developed, where the combination of phenyl phosphilic acid and trifluoroethanol is exploited to promote the Ugi-type condensation with α-isocyanoacetamide for the first time. Under this new catalytic system, the reaction using the cyclic imines as relatively inertial substrates proceed well, and chiral 3-oxazolyl-morpholin/piperazine-2-one derivatives are synthesized with high yield and stereoselectivity. Furthermore, transformation of the condensation product to a novel fused tricyclic structure is attempted initially by treatment with maleic anhydride.

Supporting Information

 
  • References and Notes

    • 1a Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
    • 1b Sadjadi S, Heravi MM. Tetrahedron 2011; 67: 2707
    • 1c Kalinski C, Umkehrer M, Weber L, Kolb J, Burdack C, Ross G. Mol. Diversity 2010; 14: 513
    • 1d Dömling A. Chem. Rev. 2006; 106: 17
    • 1e Boger DL, Desharnais J, Capps K. Angew. Chem. Int. Ed. 2003; 42: 4138
    • 1f Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 2a Musonda CC, Little S, Yardley V, Chibale K. Bioorg. Med. Chem. Lett. 2007; 17: 4733
    • 2b Wang Q, Xia Q, Ganem B. Tetrahedron Lett. 2003; 44: 6825
    • 2c Janvier P, Bois-Choussy M, Bienayme H, Zhu J. Angew. Chem. Int. Ed. 2003; 42: 811
    • 2d Sun X, Janvier P, Zhao G, Bienayme H, Zhu J. Org. Lett. 2001; 3: 877
    • 3a Faulkner DJ. Nat. Prod. Rep. 1999; 16: 155
    • 3b von Geldern TW, Hutchins C, Kester JA, Wu-Wong JR, Chiou W, Dixon DB, Opgenorth TJ. J. Med. Chem. 1996; 39: 957
    • 3c von Geldern TW, Kester JA, Bal R, Wu-Wong JR, Chiou W, Dixon DB, Opgenorth TJ. J. Med. Chem. 1996; 39: 968
    • 3d Wipf P. Chem. Rev. 1995; 95: 2115
    • 3e Davidson BS. Chem. Rev. 1993; 93: 1771
    • 4a Somogyi L, Haberhauer G, Rebek JJr. Tetrahedron 2001; 57: 1699
    • 4b Falorni M, Giacomelli G, Porcheddu A, Dettori G. Eur. J. Org. Chem. 2000; 3217
    • 4c Falorni M, Dettori G, Giacomelli G. Tetrahedron: Asymmetry 1998; 9: 1419
    • 5a Bondock S. Heteroat. Chem. 2005; 16: 49
    • 5b Griesbeck AG, Bondock S, Lex J. J. Org. Chem. 2003; 68: 9899
    • 5c Vedejs E, Grissom JW. J. Am. Chem. Soc. 1988; 110: 3238
    • 5d Boger DL. Chem. Rev. 1986; 86: 781
    • 6a van Berkel SS, Bögels BG. M, Wijdeven MA, Westermann B, Rutjes FP. J. T. Eur. J. Org. Chem. 2012; , in press; DOI: 10.1002/ejoc.201200030
    • 6b Ramón DJ, Yus M. Angew. Chem. Int. Ed. 2005; 44: 1602
    • 6c Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
  • 7 Yue T, Wang MX, Wang DX, Masson G, Zhu J. Angew. Chem. Int. Ed. 2009; 48: 6717
    • 8a Bughin C, Masson G, Zhu J. J. Org. Chem. 2007; 72: 1826
    • 8b Janvier P, Sun X, Bienayme H, Zhu J. J. Am. Chem. Soc. 2002; 124: 2560
    • 9a Zhu D, Xia L, Pan L, Li S, Chen R, Mou Y, Chen X. J. Org. Chem. 2012; 77: 1386
    • 9b Zhu D, Chen R, Liang H, Li S, Pan L, Chen X. Synlett 2010; 897
    • 10a Eiders N, Ruijter E, de Kanter FJ. J, Groen MB, Orru RV. A. Chem.–Eur. J. 2008; 14: 4961
    • 10b Zhou X.-T, Lin Y.-R, Dai L.-X, Sun J. Tetrahedron 1998; 54: 12445
  • 11 Fayol A, González-Zamora E, Bois-Choussy M, Zhu J. Heterocycles 2007; 73: 729
  • 12 Pan SC, List B. Angew. Chem. Int. Ed. 2008; 47: 3622
  • 13 Typical Procedure for the Synthesis of 6 To a mixture of imine 5a (42 mg, 0.21 mmol) and isocyanides 1d (35 mg, 0.21 mmol) in TFE (0.5 mL) was added phenyl phosphilic acid (3 mg, 0.021 mmol) at r.t. under stirring. After 20 min, additional 1d (14 mg, 0.084 mmol) was added, and the mixture was stirred for another 40 min. The reaction was quenched with aq NaHCO3, and extracted with CH2Cl2. The organic layers were dried over Na2SO4 and concentrated. The residue was purified by flash column chromatography on silica gel (PE–EtOAc = 3:2) to afford product 6d; yield 92%; colorless gel; [α]D 20 –31 (c 0.7, in CH2Cl2). IR (neat): 3312, 2922, 2854, 1744, 1213, 1116, 753, 701 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.22–7.33 (m, 5 H), 4.33 (dd, J = 3.5, 10.5 Hz, 1 H), 4.19 (t, J = 10.4 Hz, 1 H), 3.72–3.78 (m, 4 H), 3.46–3.55 (m, 1 H), 2.88–2.93 (m, 4 H), 2.76 (dd, J = 5.1, 13.7 Hz, 1 H), 2.59 (dd, J = 8.7, 13.7 Hz, 1 H), 2.06 (s, 3 H), 1.73 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 167.8, 157.1, 151.7, 136.3, 128.9, 128.8, 127.0, 121.3, 74.3, 66.8, 60.8, 50.7, 49.6, 37.7, 25.9, 11.2 ppm. HRMS (ESI+): m/z calcd for C20H25N3O4Na [M + Na]+: 394.1743; found: 394.1749
  • 14 Nakata H, Imai T, Yokoshima S, Fukuyama T. Heterocycles 2008; 76: 747
    • 15a Bartfai T, Lu X, Badie-Mahdavi H, Barr AM, Mazarati A, Hua X.-Y, Yaksh T, Haberhauer G, Ceide SC, Trembleau L, Somogyi L, Krock L, Bartfai T, Rebek JJr. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 10470
    • 15b Ceide SC, Trembleau L, Haberhauer G, Somogyi L, Lu X, Bartfai T, Rebek JJr. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 16727
    • 15c Haberhauer G, Somogyi L, Rebek JJr. Tetrahedron Lett. 2000; 41: 5013
    • 16a Majid C, James ME, Albert P. Synlett 2011; 215
    • 16b Shimada S. J. Heterocycl. Chem. 1987; 24: 1237
    • 16c Crank G, Khan HR. J. Heterocycl. Chem. 1985; 22: 1281
    • 16d Shimada S, Tojo T. Chem. Pharm. Bull. 1983; 31: 4247
    • 17a Islas-Jácome A, González-Zamora E, Gámez-Montaño R. Tetrahedron Lett. 2011; 52: 5245
    • 17b Zamudio-Medine A, García-González MC, Padilla J, González-Zamora E. Tetrahedron Lett. 2010; 51: 4837
    • 17c Bonne D, Dekhane M, Zhu J. Angew. Chem. Int. Ed. 2007; 46: 2485
    • 17d Fayol A, Zhu J. Tetrahedron 2005; 61: 11511
    • 17e Janvier P, Bienayme H, Zhu J. Angew. Chem. Int. Ed. 2002; 41: 4291
    • 17f Fayol A, Zhu J. Angew. Chem. Int. Ed. 2002; 41: 3633
    • 17g Gámez-Montaño R, Zhu J. Chem. Commun. 2002; 2448
    • 17h González-Zamora E, Fayol A, Bois-Choussy M, Chiaroni A, Zhu J. Chem. Commun. 2001; 1684
    • 18a Zou Y, Liu Q, Deiters A. Org. Lett. 2011; 13: 4352
    • 18b Arinbasarova AY, Medentsev AG, Kozlovsky AG. Appl. Biochem. Microbiol. 2007; 43: 625
    • 18c Bagley MC, Xiong X. Org. Lett. 2004; 6: 3401
    • 18d Anzini M, Cappelli A, Vomero S, Giorgi G, Langer T, Bruni G, Romeo MR, Basile AS. J. Med. Chem. 1996; 39: 4275
    • 18e Duerr D, Brunner HG, Szczepanski H. US 4721522, 1988 ; Chem. Abstr. 1988, 109, 170430b
    • 19a Raparti V, Chitre T, Bothara K, Kumar V, Dangre S, Khachane C, Gore S, Deshmane B. Eur. J. Med. Chem. 2009; 44: 3954
    • 19b He Q, Zhu X, Shi M, Zhao M, Zhao J, Zhang S, Miao J. Bioorg. Med. Chem. 2007; 15: 3889
    • 19c Arcelli A, Balducci D, Neto Sd. F. E, Porzi G, Sandri M. Tetrahedron: Asymmetry 2007; 18: 562