Synlett 2012; 23(16): 2328-2332
DOI: 10.1055/s-0032-1317156
letter
© Georg Thieme Verlag Stuttgart · New York

β-Cyclodextrin-Mediated Acetic Acid Catalyzed Diastereoselective Mannich Reaction in Water

Subbiah Sukumari
School of Chemistry, Madurai Kamaraj University, Madurai 625021, India   Fax: +91(452)2459181   Email: pit12399@yahoo.com
,
Ismail Abulkalam Azath
School of Chemistry, Madurai Kamaraj University, Madurai 625021, India   Fax: +91(452)2459181   Email: pit12399@yahoo.com
,
Kasi Pitchumani*
School of Chemistry, Madurai Kamaraj University, Madurai 625021, India   Fax: +91(452)2459181   Email: pit12399@yahoo.com
› Author Affiliations
Further Information

Publication History

Received: 16 June 2012

Accepted after revision: 30 July 2012

Publication Date:
10 September 2012 (online)


Abstract

A highly efficient diastereoselective Mannich reaction has been carried out in water using a catalytic amount of β-cyclodextrin as a chiral host in the presence of acetic acid to give the corresponding β-aminoketones (Mannich bases) with good yield (up to 98%) and excellent diastereomeric excess (up to >99%). This ­Brønsted acid–chiral cyclodextrin composite catalyzed reaction proceeds in a syn-selective manner with 98:2 syn/anti selectivity when propiophenone is used as the ketone moiety and in an anti-­selective manner with 100:0 (anti/syn) selectivity when cyclohexanone is used.

Supporting Information

 
  • References and Notes

    • 1a Kobayashi S, Mori Y, Fossey JS, Salter MM. Chem. Rev. 2011; 111: 2626
    • 1b Ma JA. Angew. Chem. Int. Ed. 2003; 42: 4290
    • 1c Liu M, Sibi MP. Tetrahedron 2002; 58: 7991
    • 1d Duthaler RO. Tetrahedron 1994; 50: 1539
    • 2a Hayashi Y, Tsuboi W, Ashimine I, Urushima T, Shoji M, Sakai K. Angew. Chem. Int. Ed. 2003; 42: 3677
    • 2b Denmark S, Nicaise OJ.-C In Comprehensive Asymmetric Catalysis. Vol. 2. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Berlin: 1999: 93
    • 2c Arend M, Westermanm B, Risch N. Angew. Chem. Int. Ed. 1998; 37: 1044

      For a recent review in this area, see:
    • 3a Verkade JM. M, Hemert LJ. C.V, Quaedflieg PJ. L. M, Rutjes FP. J. T. Chem. Soc. Rev. 2008; 37: 29
    • 3b Ting A, Schaus SE. Eur. J. Org. Chem. 2007; 5797
    • 3c For a short survey of highlights in this field, see: Marques MM. B. Angew. Chem. Int. Ed. 2006; 45: 348
    • 4a List B. J. Am. Chem. Soc. 2000; 122: 9336
    • 4b Lou S, Taoka BM, Ting A, Sehaus SE. J. Am. Chem. Soc. 2005; 127: 11256
    • 4c Guo Q.-X, Liu H, Guo C, Leo S.-W, Gu Y, Ghong LZ. J. Am. Chem. Soc. 2007; 129: 3790
  • 5 Kobayashi S, Nagayama S, Busujima T. Tetrahedron Lett. 1996; 37: 9221
  • 6 Kobayashi S, Nagayama S. J. Am. Chem. Soc. 1998; 120: 2985
  • 7 Kobayashi S, Nagayama S. J. Org. Chem. 1997; 62: 232
  • 8 Manabe K, Kobayashi S. Org. Lett. 1999; 1: 1965
  • 9 Manabe K, Mori Y, Kobayashi S. Tetrahedron 2001; 57: 2537
  • 10 Loh TP, Liung SB. K. W, Tan KL, Wei LL. Tetrahedron 2000; 56: 3227
  • 11 Akiyama T, Takaya J, Kagoshima H. Adv. Synth. Catal. 2002; 344: 338
  • 12 Boglio C, Lemiere G, Hasenknopf B, Thorimbert S, Lacote E, Malacria M. Angew. Chem. Int. Ed. 2006; 45: 3324
  • 13 Chang CT, Liao BS, Liu ST. Tetrahedron Lett. 2006; 47: 9257
  • 14 Ollevier T, Nadeau E. Org. Biomol. Chem. 2007; 5: 3126
  • 15 Vencato I, Mascarenhas YP, Pilli RA, Russowsky D. J. Braz. Chem. Soc. 1992; 3: 65
  • 16 Bigdeli MA, Nemati F, Mahdavinia GH. Tetrahedron Lett. 2007; 48: 6801
  • 17 Mukhopadhyay C, Datta A, Butcher RY. Tetrahedron Lett. 2009; 50: 4246
  • 18 Wu H, Shen Y, Fan L.-Y, Wan Y, Zhang P, Chenand C.-F, Wang W.-X. Tetrahedron 2007; 63: 2404
  • 19 Kidwai M, Jain A, Poddar R, Bhardwaj S. Appl. Organometal. Chem. 2011; 25: 335
  • 20 Akiyama T, Matsuda K, Fuchibe K. Synlett 2005; 322
  • 21 Kumar VP, Reddy MS, Narender M, Surendra K, Nageswar YV. D, Rama RaoK. Tetrahedron Lett. 2006; 47: 6393
    • 22a Marchetti L, Levine M. ACS Catal. 2011; 1: 1090
    • 22b Hapiot F, Ponchel A, Tilloy S, Monflier EC. R. Chimie 2011; 14: 149
    • 23a Hapiot F, Tilloy S, Monflier E. Chem. Rev. 2006; 106: 767
    • 23b Six N, Guerriero A, Landy D, Peruzzini M, Gonsalvi L, Hapiot F, Monflier E. Catal. Sci. Technol. 2011; 1: 1347
    • 23c Monti S, Koehler G, Grabner G. J. Phys. Chem. 1993; 97: 13011
    • 23d Takahashi K. Chem. Rev. 1998; 98: 2013
  • 24 Reddy MA, Bhanumathi N, Rama Rao K. Chem. Commun. 2001; 1974
    • 25a Suresh P, Annalakshmi S, Pitchumani K. Tetrahedron 2007; 63: 4959
    • 25b Annalakshmi S, Pitchumani K. Eur. J. Org. Chem. 2006; 1034
    • 25c Durai Manickam MC, Annalakshmi S, Pitchumani K, Srinivasan C. Org. Biomol. Chem. 2005; 3: 1008
    • 25d Kanagaraj K, Pitchumani K. Tetrahedron Lett. 2010; 51: 3312
    • 26a Kanagaraj K, Suresh P, Pitchumani K. Org. Lett. 2010; 12: 4070
    • 26b Suresh P, Pitchumani K. Tetrahedron Asymmetry 2008; 19: 2037
    • 27a Molecular Encapsulation: Organic Reactions in Constrained Systems. Brinker UH, Mieusset JL. Wiley; Chichester: 2010: 48
    • 27b Siegel B, Breslow R. J. Am. Chem. Soc. 1975; 97: 6869
    • 28a General Procedure for the Mannich Reaction of Aldehydes, Amines and Propiophenone: Amine (1 mmol) was added to β-CD (0.1 mmol) dissolved in H2O (2 mL) and stirred until the inclusion complex was formed and then aldehyde (1 mmol), AcOH (2 mL) and propiophenone (1 mmol) were added successively and stirred at 10 °C for 48 h. A sat. aq NaHCO3 solution was added to the above reaction mixture, extracted with EtOAc, dried over Na2SO4 and concentrated. The product was purified either by recrystal-lization from EtOH–acetone mixture (3:2) or by silica gel column chromatography
    • 28b Analytical data of a few typical compounds are given below: (i)3-[(4-Chlorophenyl)amino]-2-methyl-1,3-diphenylpropan-1-one (4a) (Table 2, entry 1): 1H NMR [300 MHz, CDCl3, Me4Si; syn/anti = 98:2 (HPLC)]: δ = 1.20 (d, J = 7.0 Hz, 3 H), 3.92–4.00 (m, 1 H), 4.51 (br s, 1 H), 4.69 (br s, 1 H), 6.37 (d, J = 9.0 Hz, 2 H), 6.96 (d, J = 9.0 Hz, 2 H), 7.24–7.60 (m, 8 H), 7.94 (d, J = 7.5 Hz, 2 H). 13C NMR (75 MHz, CDCl3; syn/anti = 98:2): δ = 11.2, 46.7, 59.2, 114.8, 122.2, 126.7, 127.4, 128.2, 128.7, 128.8, 131.6, 133.4, 136.0, 140.9, 145.7, 202.6. HRMS (ESI): m/z [M + Na]+ calcd for C22H20ClNO: 372.12; found: 372.42. HPLC: diastereomeric ratio was determined by HPLC with a Chiralcel OD-H column (n-hexane–isopropanol, 90:10; flow rate: 0.3 mL/min; λ = 254 nm); dr (syn/anti) = 98:2. (ii) 2-Methyl-1,3-diphenyl-3-(phenylamino)propan-1-one (Table 2, entry 2): 1H NMR (300 MHz, CDCl3, Me4Si; syn/anti = 91:9): δ = 1.22 (d, J = 6.9 Hz, 3 H), 3.85–4.15 (m, 1 H), 4.46 (br s, 1 H), 4.75 (br s, 1 H), 6.45 (d, J = 8.4 Hz, 2 H), 6.59–6.63 (m, 1 H), 7.00–7.57 (m, 10 H), 7.95 (d, J = 7.5 Hz, 2 H). 13C NMR (75 MHz, CDCl3; syn/anti = 91:9): δ = 11.4, 46.9, 59.2, 113.7, 117.5, 126.8, 127.2, 128.2, 128.6, 128.7, 128.9, 133.2, 136.3, 141.9, 147.2, 202.7. HRMS (ESI): m/z [M + H]+ calcd for C22H22NO: 316.16; found: 316.50. HRMS (ESI): m/z [M + Na]+ calcd for C22H21NO: 338.16; found: 338.42. HRMS: m/z [M + K]+ calcd for C22H21NOK: 354.16; found: 354.33. HPLC: diastereomeric ratio was determined by HPLC with a chiralcel OD-H column (n-hexane–isopropanol, 90:10; flow rate: 0.3 mL/min; λ = 254 nm); dr (syn/anti) = 91:9
  • 29 Choudhury LH, Parvin T. Tetrahedron 2011; 67: 8213
  • 30 Ollevier T, Nadeau E. J. Org. Chem. 2004; 69: 9292
  • 31 Ranu BC, Samanta S, Guchhait SK. Tetrahedron 2002; 58: 983