Synlett 2013; 24(4): 443-448
DOI: 10.1055/s-0032-1318188
letter
© Georg Thieme Verlag Stuttgart · New York

Cu(OAc)2-Catalyzed Thiolation of Acyl C–H Bonds with Thiols Using TBHP as an Oxidant

Yan-qin Yuan*
a   Department of Chemistry, Lishui University, 323000 Lishui, P. R. of China, Email: guosr9609@lsu.edu.cn
,
Sheng-rong Guo
a   Department of Chemistry, Lishui University, 323000 Lishui, P. R. of China, Email: guosr9609@lsu.edu.cn
b   College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Email: jnxiang@hnu.edu.cn
,
Jian-nan Xiang*
b   College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Email: jnxiang@hnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 18 November 2012

Accepted after revision: 17 January 2013

Publication Date:
07 February 2013 (online)


Abstract

Cu(OAc)2-promoted TBHP oxidative coupling reaction of formamides with thiols successfully proceeded through direct C–H bond activation of formamides. The corresponding S-phenyl dialkyl thiocarbamate compounds were formed with high yield under solvent-free conditions.

Supporting Information

 
  • References and Notes

    • 1a Bichler P, Jennifer AL. Top. Organomet. Chem. 2010; 31: 39
    • 1b Dvorak CA, Schmitz WD, Poon DJ. Angew. Chem. Int. Ed. 2000; 39: 1664
    • 1c Murru S, Patal BK, Bras JL, Muzart J. J. Org. Chem. 2009; 74: 2217
    • 1d Berger MD, Dutia M, Powell D, Floyd BM, Torres N, Mallon R, Wojciechowicz D, Kim S, Feldberg L, Collins K, Chaudhary I. Bioorg. Med. Chem. 2008; 16: 9202
    • 1e Chen-Hsien W. Synthesis 1981; 622
    • 2a Denise A, Colby RG, Jonathan A. Chem. Rev. 2010; 110: 624
    • 2b Gerald D. Handbook of C–H Transformation, Applications in Organic Synthesis. WILEY-VCH Verlag GmbH & Co. KGaA; Weinheim: 2005
    • 2c Gunay A, Klaus H. Chem. Rev. 2010; 110: 1060
    • 2d Thomas WL, Melanie SS. Chem. Rev. 2010; 110: 1147
  • 3 Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
  • 4 Fukuzawa S.-I, Shimizu S.-I, Atsuumi Y, Haga M, Ogata K. Tetrahedron Lett. 2009; 50: 2374
  • 5 Zhang S, Qian P, Zhang M, Hu M, Cheng J. J. Org. Chem. 2010; 75: 6732
  • 6 Tang R, Xie Y, Xie Y, Xiang J, Li J. Chem. Commun. 2011; 47: 12867
  • 7 Ding ST, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 1
    • 8a Barve BD, Wu Y, Chuang D, Chung Y, Tsai Y, Wu S, Michal K, Du Y, Hsieh C, Wang J, Chang F. Eur. J. Org. Chem. 2012; 6760
    • 8b Sawant DN, Wagh YS, Bhatte KD, Bhanage BM. J. Org. Chem. 2011; 76: 5489
    • 8c Li Y, Xie Y, Zhang R, Jin K, Wang X, Duan C. J. Org. Chem. 2011; 76: 5444
    • 9a Kumar GS, Maheswari CU, Kumar RA, Kantam ML, Reddy KR. Angew. Chem. Int. Ed. 2011; 50: 11748
    • 9b He T, Li H, Li P, Wang L. Chem. Commun. 2011; 47: 8946
  • 10 Typical Procedure: Under a N2 atmosphere, a reaction vessel was charged with 1a (or 1b, 1c) (1.0 mmol), ArSH 2 (1.2 mmol), Cu(OAc)2·H2O (10 mol%), and 70% aq TBHP (4 mmol). The mixture was stirred at 120 °C and monitored by TLC. Upon completion of the reaction (approximately 12 h), the mixture was cooled to r.t. and mixed with H2O (15.0 mL). The product was then extracted with CH2Cl2 (3 × 10 mL). The organic layers were combined, dried over anhyd Na2SO4, concentrated under reduced pressure, and purified over a column of silica gel (EtOAc–hexane as eluent) to give product 3a in 87% yield. 1H NMR (300 MHz, CDCl3): δ = 7.34−7.43 (m, 4 H), 3.72 (t, J = 5.1 Hz, 4 H), 3.59 (t, J = 4.8 Hz, 4 H). 13C NMR (75 MHz, CDCl3): δ = 164.6, 135.9, 134.8, 128.2, 125.5, 65.4, 44.3. The identity and purity of other products were confirmed by 1H NMR and 13C NMR spectroscopic analysis.
  • 11 Liu Z, Zhang J, Chen S, Shi E, Xu Y, Wan X. Angew. Chem. Int. Ed. 2012; 51: 3231
    • 12a Xie J, Huang Z. Angew. Chem. Int. Ed. 2010; 49: 10181
    • 12b Sadananda R, Lee R, Heryadi D, Shen C, Wu J, Zhang P, Huang K, Liu X. J. Org. Chem. 2011; 76: 8999
    • 12c Dai C, Xu Z, Huang F, Yu Z, Gao Y. J. Org. Chem. 2012; 77: 4414