Synlett 2013; 24(20): 2641-2659
DOI: 10.1055/s-0033-1338978
account
© Georg Thieme Verlag Stuttgart · New York

Molecular Complexity and Diversity from Aromatics. The Chemistry of Spiro[cyclohexa-2,4-dienone-6,2′-oxiranes] and Their Congeners: Cycloaddition and Beyond

Vishwakarma Singh*
Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India   Fax: +91(22)25723480   Email: vks@chem.iitb.ac.in
› Author Affiliations
Further Information

Publication History

Received: 10 August 2013

Accepted: 06 September 2013

Publication Date:
07 November 2013 (online)


Abstract

The efficient generation of complex molecular architectures from simple precursors is one of the most important aspects in the design and development of synthetic methodologies. The chemistry of reactive species generated by the oxidative dearomatization of phenols, such as o-quinone acetals, 6-acetoxycyclohexa-2,4-di­enones, and their congeners, has stimulated widespread interest among organic chemists, and the use of such reactive species has emerged as a powerful method for the efficient synthesis of complex molecules. Our approach to create molecular complexity and diversity involves the oxidative dearomatization of 2-(hydroxymethyl)phenols to give spiro[cyclohexa-2,4-dienone-6,2′-oxiranes], followed by cycloaddition and transformation of the resulting adducts in the ground and excited states. In this account, we describe the evolution of the methodology and its application which has led to the development of novel and efficient routes to a diverse array of complex molecular architectures from simple aromatics.

1 Introduction

2 Cycloaddition of Cyclohexa-2,4-dienones of Types 3 and 4 and Manipulation of the Adducts in the Ground and Excited States

2.1 Cycloaddition of Cyclohexa-2,4-dienones of Types 3 and 4: An Efficient Route to Functionalized and Appended Bicyclo[2.2.2]octanes

2.1.1 Cycloaddition of Cyclohexa-2,4-dienones of Types 3 and 4 with Electron-Deficient π-Partners

2.1.2 Cycloaddition of Cyclohexadienones of Type 4 with Vinyl Ethers and Vinyl Acetate

2.1.3 Cycloaddition of Cyclohexadienones of Types 3 and 4 with Acyclic 1,3-Dienes: Direct Entry to Bicyclo[2.2.2]octenones Having an endo-Vinyl Group

2.2 Manipulation of the Oxirane Moiety or the Chloromethyl and Hydroxy Groups in the Adducts: Synthesis of Embellished Bicyclo[2.2.2]octanes

2.3 3,3-Sigmatropic Shift in Bicyclo[2.2.2]octanes: A General Stereoselective Route to Functionalized cis-Decalin Derivatives

2.4 Sigmatropic Rearrangements of β,γ-Enones in Excited States: Stereoselective Routes to Bicyclo[3.3.0]- and Bi­cyclo[4.2.0]octanes and Tricyclic Compounds

3 Synthetic Applications

3.1 Synthesis of Hirsutic Acid C and the Framework of ­Pupukeananes from a Common Precursor

3.2 Chemistry of Fused Spiro[cyclohexa-2,4-dienone-6,2′-oxiranes] and Their Adducts: Synthesis of Propellanes and ­Steroid–Polyquinane Hybrids

3.2.1 A General Route to [3.3.3]- and [4.3.3]Propellanes

3.2.2 Synthesis of Steroid–Polyquinane Hybrids

3.3 Synthesis of Tri- and Tetracyclic Networks of Atisane Diterpenoids

3.3.1 Synthesis of Tricyclo[6.2.2.01,6]dodecanes and Their Homologues

3.3.2 Synthesis of the Tetracyclic Network of Atisane Diterpenoids: An Interesting Manifestation of Subtle Control by a Remote Functional Group

3.4 Intramolecular Cycloaddition of Cyclohexa-2,4-dienones: Synthesis of Platencin

4 Summary and Outlook

 
  • References

    • 1a Davies HM. L, Sorensen EJ. Chem. Soc. Rev. 2009; 38: 2981
    • 1b Nicolaou KC, ChenJason S. Chem. Soc. Rev. 2009; 38: 2993
    • 1c Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
    • 1d Poulin J, Grise-Bard CM, Barriault L. Chem. Soc. Rev. 2009; 38: 3092
    • 2a Tietze LF. Chem. Rev. 1996; 96: 115
    • 2b Tietze LF, Brasche G, Gericke KM. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006
    • 2c Umland KD, Kirsch SF. Synlett 2013; 24: 1417
    • 3a Liao C.-C, Peddinti RK. Acc. Chem. Res. 2002; 35: 856 ; and references cited therein
    • 3b Magdziak D, Meek SJ, Pettus TR. R. Chem. Rev. 2004; 104: 1383
    • 3c Liao CC. Pure Appl. Chem. 2005; 77: 1221
    • 3d Quideau S, Pouységu L, Deffieux D. Synlett 2008; 467
    • 3e Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
    • 4a Roche SP, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 4068
    • 4b Gong J, Lin G, Sun W, Li C.-C, Yang Z. J. Am. Chem. Soc. 2010; 132: 16745
    • 4c Constantin MA, Conrad J, Merisor E, Koschorreck K, Urlacher VB, Beifuss U. J. Org. Chem. 2012; 77: 4528
    • 5a Berube A, Drutu I, Wood JL. Org. Lett. 2006; 8: 5421
    • 5b Luo S.-Y, Jang Y.-J, Liu J.-Y, Chu C.-S, Liao C.-C, Hung S.-C. Angew. Chem. Int. Ed. 2008; 47: 8082
    • 5c Mehta G, Maity P. Tetrahedron Lett. 2008; 49: 318
    • 5d Wenderaski TA, Huang S, Pettus TR. R. J. Org. Chem. 2009; 74: 4104
    • 6a Singh V. Acc. Chem. Res. 1999; 32: 324 ; and references cited therein
    • 6b Singh V, Thomas B. J. Chem. Soc., Chem. Commun. 1992; 1211
    • 6c Singh V, Porinchu M. J. Chem. Soc., Chem. Commun. 1993; 134
    • 6d Singh V, Vedantham P, Sahu PK. Tetrahedron 2004; 60: 8161
    • 6e Singh V, Porinchu M, Vedantham P, Sahu PK. Org. Synth. 2005; 81: 171
    • 7a Waring AJ. In Advances in Alicyclic Chemistry . Vol. 1. Hart H, Karabatsos GJ. Academic; New York: 1966: 129-256
    • 7b Zibral E, Wessely F, Sturm H. Monatsh. Chem. 1962; 93: 15
    • 8a Becker H.-D, Bremholt T, Adler E. Tetrahedron Lett. 1972; 13: 4205
    • 8b Adler E, Brasen S, Miyake H. Acta Chem. Scand. 1971; 25: 2055
    • 9a Banwell MG. Pure Appl. Chem. 1996; 68: 539
    • 9b Boyd DR, Bugg TD. H. Org. Biomol. Chem. 2006; 4: 181
    • 10a Jayasuriya H, Herath KB, Zhang C, Zink DL, Basilio A, Genilloud O, Diez MT, Vicente F, Gonzalez I, Salazar O, Pelaez F, Cummings R, Ha S, Wang J, Singh SB. Angew. Chem. Int. Ed. 2007; 46: 4684
    • 10b Hanson JR. Nat. Prod. Rep. 2011; 28: 1755
    • 11a Evans DA, Scott WL, Truesdale LK. Tetrahedron Lett. 1972; 13: 121
    • 11b Evans DA, Scott WL, Truesdale LK. Tetrahedron Lett. 1972; 13: 137
    • 11c Banwell MG, Dupuche JR. Chem. Commun. 1996; 869
    • 12a Boger DL In Classics in Total Synthesis II . Nicolaou KC, Snyder SA. Wiley-VCH; Weinheim: 2003: 16-30
    • 12b Fleming I. Frontier Orbitals and Organic Chemical Reactions . John Wiley and Sons; Chichester: 1978. Chap. 4, 86-18
    • 12c Woodward RB, Hoffman R. Conservation of Orbital Symmetry . Academic; New York: 1972: 65-113
    • 13a Singh V, Pal S, Mobin SM. J. Org. Chem. 2006; 71: 3014
    • 13b Singh V, Pal S, Mobin SM. Chem. Commun. 2002; 2050
  • 15 Singh V, Chandra G, Mobin SM. Synthesis 2008; 2719
    • 16a Singh V, Iyer S, Pal S. Tetrahedron 2005; 61: 9197
    • 16b Yen C.-F, Peddiniti RK, Liao C.-C. Org. Lett. 2000; 2: 2909
    • 16c Hsieh M.-F, Rao PD, Liao C.-C. Chem. Commun. 1999; 1441
    • 16d Drutu I, Njardarson JT, Wood JL. Org. Lett. 2002; 4: 493
    • 16e Toyota M, Yokota M, Ihara M. Tetrahedron Lett. 1999; 40: 1551
    • 17a Rasser F, Anke T, Sterner O. Phytochemistry 2000; 54: 511
    • 17b Xie J.-L, Li L.-P, Dai ZQ. J. Org. Chem. 1992; 57: 2313
    • 17c Zheng Y, Shen Y. Org. Lett. 2009; 11: 109
    • 17d Ovaska TV, Kyne RE. Tetrahedron Lett. 2008; 49: 376
    • 18a Singh V, Iyer S. Chem. Commun. 2001; 2578
    • 18b Singh V, Iyer SR, Mobin SM. J. Org. Chem. 2005; 70: 973
  • 19 Singh V, Praveena GD, Karki K, Mobin SM. J. Org. Chem. 2007; 72: 2058
  • 20 Singh V, Iyer SR. Tetrahedron 2005; 61: 457
  • 21 Handbook of Metathesis. Grubbs RH. Wiley-VCH; Weinheim: 2003
  • 22 Ilardi EA, Stivala CE, Zakarian A. Chem. Soc. Rev. 2009; 38: 3133
    • 23a Schuster DI In Rearrangements in Ground and Excited States . Vol. 3. de Mayo P. Academic; New York: 1980: 232-279
    • 23b Givens RS, Chae WK, Matuszewski B. J. Am. Chem. Soc. 1982; 104: 2456
    • 23c Schuster DI, Calcaterra LT. J. Am. Chem. Soc. 1981; 103: 2460
    • 23d Coffin RL, Cox WW, Carlson RG, Givens RS. J. Am. Chem. Soc. 1979; 101: 3261
    • 24a Zimmerman HE, Armesto D. Chem. Rev. 1996; 96: 3065
    • 24b Demuth M In Organic Photochemistry . Vol. 11. Padwa A. Marcell Dekker; New York: 1991: 37-97
    • 24c Demuth M, Hisken W. Angew. Chem. Int. Ed. Engl. 1985; 24: 973
  • 25 Singh V In CRC Handbook of Organic Photochemistry and Photobiology . Horspool WM, Lenci F. CRC; Boca Raton: 2004. Chaps. 78 and 79
    • 26a Bon DJ.-Y. D, Banwell MG, Cade IA, Willis AC. Tetrahedron 2011; 67: 8348
    • 26b Goodell JR, Poole JL, Beeler AB, Aubé J, Porco JA. Jr. J. Org. Chem. 2011; 76: 9792
  • 27 Mellows G, Mantle PG, Feline TC, Williams DJ. Phytochemistry 1973; 12: 2717
    • 28a Mehta G, Srikrishna A. Chem. Rev. 1997; 97: 671
    • 28b Little RD. Chem. Rev. 1996; 96: 93
    • 28c Ader TA, Champey CA, Kuznetsova LV, Li T, Lim Y.-H, Rucando D, Sieburth SMcN. Org. Lett. 2001; 3: 2165
    • 28d Erguden J.-K, Moore HW. Org. Lett. 1999; 1: 375
    • 28e Tzvetkov NT, Neumann B, Stammler H.-G, Mattay J. Eur. J. Org. Chem. 2006; 351
  • 29 Srikrishna A, Ravi Kumar P. Tetrahedron Lett. 2002; 43: 1109
  • 30 Singh V, Pal S, Tosh DK, Mobin SM. Tetrahedron 2007; 63: 2446
  • 31 Greene AE, Luche MJ, Serra AA. J. Org. Chem. 1985; 50: 3957
    • 32a Gauvin A, Susperregui J, Barth P, Louis R, Deleris G, Smadja J. Phytochemistry 2004; 65: 897
    • 32b Comey N, Grey AI, Hook IL, James P, Sheridan H. Phytochemistry 1999; 50: 1057
    • 32c Dvorak CA, Dufour C, Iwasa S, Rawal VH. J. Org. Cehm. 1998; 63: 5302
    • 32d Tzvetkov N, Schmidtmann M, Muller A, Mattay J. Tetrahedron Lett. 2003; 44: 5979
    • 32e Sha C.-K, Jean T.-S, Wang D.-C. Tetrahedron Lett. 1990; 31: 3745
    • 32f Sha C.-K, Jean T.-S, Yau N.-T, Huang S.-J, Chiou R.-T, Young J.-F, Lih S.-H, Tseng W.-H. J. Chin. Chem. Soc. 1995; 42: 637
    • 32g Jasperse CP, Curran DP. J. Am. Chem. Soc. 1990; 112: 5601
    • 33a Tietze LF, Schneider G, Wolfling J, Fecher A, Nobel T, Petersen S, Schuberth I, Wulff C. Chem. Eur. J. 2000; 6: 3755
    • 33b Masters JJ, Jung DK, Danishefsky SJ, Snyder LB, Park TK, Issacs RC. A, Alaimo CA, Young WB. Angew. Chem. Int. Ed. Engl. 1995; 34: 452
  • 34 Mehta G, Singh V. Chem. Soc. Rev. 2002; 31: 324
  • 35 Singh V, Sahu PK, Singh RB, Mobin SM. J. Org. Chem. 2007; 72: 10155
  • 36 Singh V, Lahiri S, Kane VV, Stey T, Stalke D. Org. Lett. 2003; 5: 2199
    • 37a Singh V, Lahiri S. Tetrahedron Lett. 2003; 44: 4239
    • 37b Singh V, Sahu PK, Mobin SM. Tetrahedron 2004; 60: 9925
    • 38a Hanson JR. Nat. Prod. Rep. 2009; 26: 1156
    • 38b Perry NB, Burgess EJ, Baek S.-H, Weavers RT. Org. Lett. 2001; 3: 4243
    • 38c Huang S.-X, Zhou Y, Yang L.-B, Zhao Y, Li S.-H, Lou L.-G, Han Q.-B, Ding L.-S, Sun H.-D. J. Nat. Prod. 2007; 70: 1053
    • 39a Kume T, Asai N, Nishikawa H, Mano N, Terauchi T, Taguchi R, Shirakawa H, Osakada F, Mori H, Asakawa N, Yonaga M, Nishizawa Y, Sugimoto H, Shimohama S, Katsuki H, Kaneko S, Akaike A. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 3288
    • 39b Toyota M, Asano T, Ihara M. Org. Lett. 2005; 7: 3929
  • 40 Abad A, Agulló C, Cuñat AC, de Alfonso MarzalI, Gris A, Navarro I, de Arellano CR. Tetrahedron 2007; 63: 1664
  • 41 Singh V, Sahu PK, Sahu BC, Mobin SM. J. Org. Chem. 2009; 74: 6092
  • 42 Singh V, Bhalerao P, Sahu BC, Mobin SM. Tetrahedron 2013; 69: 137
    • 43a Singh V, Alam SQ. Chem. Commun. 1999; 2519
    • 43b Singh V, Vedantham P, Kane VV, Polborn K. Tetrahedron Lett. 2003; 44: 875
    • 43c Singh V, Alam SQ, Praveena GD. Tetrahedron 2002; 58: 9729
    • 45a Tang P, Chen Q.-H, Wang F.-P. Tetrahedron Lett. 2009; 50: 460
    • 45b Rakotonandrasana OL, Raharinjato FH, Rajaonarivelo M, Dumontet V, Martin MT, Bignon J, Rasoanaivo P. J. Nat. Prod. 2010; 73: 1730
    • 46a Yoshimitsu T, Nojima S, Hashimoto M, Tanaka T. Org. Lett. 2011; 13: 3698
    • 46b Palanichamy K, Subrahmanyam AV, Kaliappan KP. Org. Biomol. Chem. 2011; 9: 7877
    • 46c Nicolaou KC, Tria GS, Edmonds DJ. Angew. Chem. Int. Ed. 2008; 47: 1780
    • 46d Hayashida J, Rawal VH. Angew. Chem. Int. Ed. 2008; 47: 4373
  • 47 Singh V, Sahu BC, Bansal V, Mobin SM. Org. Biomol. Chem. 2010; 8: 4472