Synlett 2014; 25(12): 1764-1768
DOI: 10.1055/s-0033-1340195
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Sequential 1,4- and 1,2-Reductions of α,β-Unsaturated δ-Lactones to the Corresponding δ-Lactols with CuCl and NaBH4 in Methanol

Yasunobu Matsumoto*
a   Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
b   Discovery Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan   Fax: +81(0)298472037   Email: y7-matsumoto@hhc.eisai.co.jp
,
Masahiro Yonaga
a   Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
b   Discovery Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan   Fax: +81(0)298472037   Email: y7-matsumoto@hhc.eisai.co.jp
› Author Affiliations
Further Information

Publication History

Received: 27 March 2014

Accepted after revision 01 May 2014

Publication Date:
03 June 2014 (online)


Abstract

An efficient, one-pot method for the highly chemoselective synthesis of δ-lactols from α,β-unsaturated δ-lactones using CuCl and NaBH4 in methanol was developed.

Supporting Information

 
  • References and Notes


    • For example, see:
    • 1a Bhattacharjee A, Soltani O, De Brabander JK. Org. Lett. 2002; 4: 481
    • 1b Statsuk AV, Liu D, Kozmin SK. J. Am. Chem. Soc. 2004; 126: 9546
    • 1c Taillier C, Gille B, Bellosta V, Cossy J. J. Org. Chem. 2005; 70: 2097
    • 1d Su Q, Dakin LA, Panek JS. J. Org. Chem. 2005; 72: 2
    • 1e Ferrié L, Reymond S, Capdevielle P, Cossy J. Org. Lett. 2007; 9: 2461
    • 1f Harutyuntan S, Zhao Z, den Hartog T, Bouwmeester K, Minnaard AJ, Feringa BL, Govers F. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 8507
    • 1g Ilardi EA, Isaacman MJ, Qin Y, Shelly SA, Zakarian A. Tetrahedron 2009; 65: 3261
    • 1h Trost BM, Amanos D, Seganish WM, Chung CK. J. Am. Chem. Soc. 2009; 131: 17087
    • 1i Hendrix AJ. M, Jennings MP. Tetrahedron Lett. 2010; 51: 4260
    • 1j Liu G, Romo D. Angew. Chem. Int. Ed. 2011; 50: 7537
    • 1k Sabitha G, Reddy SS. S, Raju A, Yadav JS. Synthesis 2011; 1279
    • 1l Zhang F, Peng L, Li H, Ma A, Peng J, Guo J, Yang D, Hou S, Yu Y, Kitching Q. Angew. Chem. Int. Ed. 2012; 51: 10846
    • 1m Thakur P, Kumaraswamy B, Reddy GR, Bandichhor R, Mukkantii K. Tetrahedron: Asymmetry 2013; 23: 547
    • 1n Anish C, Guo X, Wahlbrink A, Seeberger PH. Angew. Chem. Int. Ed. 2013; 52: 9524
    • 1o Miao Z, Zhu L, Dong G, Zhuang C, Wu Y, Wang S, Guo Z, Liu Y, Wu S, Zhu S, Fang K, Yao J, Li J, Sheng C, Zhang WJ. J. Med. Chem. 2013; 56: 7902
    • 1p Hager D, Paulitz C, Tiebes J, Mayer P, Trauner D. J. Org. Chem. 2013; 78: 10784
    • 2a Grubbs RH. Tetrahedron 2004; 60: 7117
    • 2b Deiters A, Martin SF. Chem. Rev. 2004; 2199
    • 2c D’Annibal A, Ciaralli L. J. Org. Chem. 2007; 72: 6067
  • 3 Narisada M, Horibe I, Watanabe F, Takeda K. J. Org. Chem. 1989; 54: 5308
  • 4 Satoh T, Nanba K, Suzuki S. Chem. Pharm. Bull. 1971; 19: 817
  • 5 Rao SA, Periasamy M. J. Organomet. Chem. 1986; 309: C39
    • 6a Appella DH, Moritani Y, Shintani R, Ferreira EM, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 9473
    • 6b Hughes G, Kimura M, Buchwald ST. J. Am. Chem. Soc. 2003; 125: 11253
    • 6c Lipshutz BH, Servesko JM, Taft BR. J. Am. Chem. Soc. 2004; 126: 8352
    • 6d Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916
  • 7 It is noteworthy to mention that the reduction of an saturated lactone to a lactol with CuCl and NaBH4 in MeOH has not been reported previously.
  • 8 Wiberg KB, Waldron RF. J. Am. Chem. Soc. 1991; 113: 7705
  • 9 General Procedure NaBH4 (10 mmol, 10 equiv) was added in three roughly equal portions to a stirred solution of an α,β-unsaturated δ-lactone (1.0 mmol) in MeOH (10 mL; lactone concentration, 0.1 M) at –50 °C in a reaction flask connected to a drying tube containing CaCO3. After the solution was stirred for 15 min at –50 °C, the drying tube was removed, and CuCl (0.5 mmol, 0.5 equiv) was added to the reaction mixture, which immediately turned into a black suspension and evolved H2 gas (the flask was kept open to let out the gas). The reaction temperature was warmed to –20 °C over the course of 1 h, and the reaction was quenched at that temperature with sat. aq NH4Cl. Then EtOAc and H2O were added to the mixture, which was vigorously stirred for 30 min at r.t. The resulting clear solution was extracted with EtOAc, and the combined organic layers were washed with brine, dried over MgSO4, and concentrated in vacuo. The crude mixture of products was purified by silica gel flash column chromatography with gradient of EtOAc and n-heptane as eluents to afford the desired δ-lactol. 6-Benzyltetrahydro-2H-pyran-2-ol (5b) White solid (90%, cis/trans = 1.4:1). 1H NMR (600 MHz, CDCl3): δ = 7.30–7.27 (m, 4 H, cis trans), 7.22–7.20 (m, 6 H, cis trans), 5.28 (br s, 1 H, trans), 4.66 (m, 1 H, cis), 4.19 (m, 1 H, trans), 3.64 (m, 1 H, cis), 3.06 (d, J = 4.0 Hz, 1 H, cis-OH), 2.95 (dd, J = 14.0, 7.0 Hz, 1 H, cis), 2.81 (dd, J = 14.0, 7.0 Hz, 1 H, trans), 2.73 (dd, J = 14.0, 7.0 Hz, 1 H, cis), 2.67 (dd, J = 14.0, 7.0 Hz, 1 H, trans), 2.55 (br s, 1 H, trans-OH), 1.87–1.80 (m, 3 H, cis trans), 1.71–1.42 (m, 6 H, cis trans), 1.35–1.28 (m, 2 H, cis trans), 1.25–1.18 (m, 1 H, cis). 13C NMR (150 MHz, CDCl3): δ = 138.7 (trans), 138.5 (cis), 129.4 (cis), 129.4 (trans), 128.2 (cis), 128.2 (trans), 126.2 (cis), 126.1 (trans), 96.5 (cis), 92.0 (trans), 77.3 (cis), 69.7 (trans), 42.8 (trans), 42.6 (cis), 32.5 (cis), 30.9 (trans), 30.0 (cis), 29.6 (trans), 21.9 (cis), 17.3 (trans). IR (ATR): ν = 3318, 2942, 2861, 1353, 1142, 1047, 1010, 903, 746, 700 cm–1. HRMS (ESI+): m/z calcd for: C12H20NO2 [M + NH4]+: 210.1489; found: 210.148.