Synlett 2014; 25(08): 1163-1167
DOI: 10.1055/s-0033-1341023
letter
© Georg Thieme Verlag Stuttgart · New York

A Mild and Base-Free Synthesis of Unsymmetrical Diaryl Sulfones from Arylboronic Acids and Arylsulfonyl Hydrazides

Xiang-mei Wu*
Department of Chemistry, College of Science, Lishui University, Lishui, Zhejiang 323000, P. R. of China   Fax: +86(578)2271250   Email: lswxm7162@163.com
,
Yan Wang
Department of Chemistry, College of Science, Lishui University, Lishui, Zhejiang 323000, P. R. of China   Fax: +86(578)2271250   Email: lswxm7162@163.com
› Author Affiliations
Further Information

Publication History

Received: 08 January 2014

Accepted after revision: 24 February 2014

Publication Date:
27 March 2014 (online)


Abstract

A mild and efficient synthesis of diaryl sulfones from arylboronic acids and arylsulfonyl hydrazides is described. Promoted by cupric acetate and in the absence of additional ligand and base, the cross-coupling reaction could afford a series of unsymmetrical diaryl sulfones in moderate to good yields at room temperature under neutral and ambient conditions.

Supporting Information

 
  • References and Notes

    • 1a Williams TM, Ciccarone TM, MacTough SC, Rooney CS, Balani SK, Condra JK, Emini EA, Goldman ME, Greenlee WJ, Kauffman LR, O’Brien JA, Sardana VV, Schleif WA, Theoharides AD, Anderson PA. J. Med. Chem. 1993; 36: 1291
    • 1b Artico M, Silvestri R, Massa S, Loi AG, Corrias S, Piras G, La Colla P. J. Med. Chem. 1996; 39: 522
    • 1c Jones TR, Webber SE, Varney MD, Reddy MR, Lewis KK, Kathardekar V, Mazdiyasni H, Deal J, Nguyen D, Welsh KM, Webber S, Johnston A, Matthews DA, Smith WW, Janson CA, Bacquet RJ, Howland EF, Booth CL. J, Herrmann SM, Ward RW, White J, Bartlett CA, Morse CA. J. Med. Chem. 1997; 40: 677
    • 1d Dinsmore CJ, Williams TM, O’Neill TJ, Liu D, Rands E, Culberson JC, Lobell RB, Koblan KS, Kohl NE, Gibbs JB, Oliff AI, Graham SL, Hartman GD. Bioorg. Med. Chem. Lett. 1999; 9: 3301
    • 1e Sun ZY, Botros E, Su AD, Kim Y, Wang E, Baturay NZ, Kwon CH. J. Med. Chem. 2000; 43: 4160
    • 1f Doherty GA, Kamenecka T, McCauley E, Van Riper G, Mumford RA, Tonga S, Hagmanna WK. Bioorg. Med. Chem. Lett. 2002; 12: 729
    • 1g Pal M, Veeramaneni VR, Nagabelli M, Kalleda SR, Misra P, Casturib SR, Yeleswarapua KR. Bioorg. Med. Chem. Lett. 2003; 13: 1639
    • 1h Otzen T, Wempe EG, Kunz B, Bartels R, Lehwark-Yvetot G, Hänsel W, Schaper KJ, Seydel JK. J. Med. Chem. 2004; 47: 240
    • 1i Hartz RA, Arvanitis AG, Arnold C, Rescinito JP, Hung KL, Zhang G, Wong H, Langley DR, Gilligan PJ, Trainor GL. Bioorg. Med. Chem. Lett. 2006; 16: 934
    • 2a Aldea R, Alper H. J. Org. Chem. 1995; 60: 8365
    • 2b Reddy TI, Varma RS. Chem. Commun. 1997; 5: 471
    • 2c Al-Maksoud W, Daniele S, Sorokin AB. Green Chem. 2008; 10: 447
    • 2d Rahimizadeh M, Rajabzadeh G, Khatami SM, Eshghi H, Shiri A. J. Mol. Catal. A: Chem. 2010; 323: 59
    • 2e Rostami A, Akradi J. Tetrahedron Lett. 2010; 51: 3501
    • 3a Graybill BM. J. Org. Chem. 1967; 32: 2931
    • 3b Ueda M, Uchiyama K, Kano T. Synthesis 1984; 323
    • 3c Choudary BM, Chowdari NS, Kantam ML. J. Chem. Soc., Perkin Trans 2000; 1: 2689
    • 3d Nara SJ, Harjani JR, Salunkhe MM. J. Org. Chem. 2001; 66: 8616
    • 3e Frost CG, Hartley JP, Whittle AJ. Synlett 2001; 830
    • 3f Bandgar BP, Kasture SP. Synth. Commun. 2001; 31: 1065
    • 4a Suzuki H, Abe H. Tetrahedron Lett. 1995; 36: 6239
    • 4b Baskin JM, Wang Z. Org. Lett. 2002; 4: 4423
    • 4c Cacchi S, Fabrizi G, Goggiamani A, Parisi LM. Org. Lett. 2002; 4: 4719
    • 4d Cacchi S, Fabrizi G, Goggiamani A, Parisi LM. Synlett 2003; 361
    • 4e Cacchi S, Fabrizi G, Goggiamani A, Parisi LM, Bernini R. J. Org. Chem. 2004; 69: 5608
    • 4f Bandgar BP, Bettigeri SV, Phopase J. Org. Lett. 2004; 13: 2105
    • 4g Zhu W, Ma D. J. Org. Chem. 2005; 70: 2696
    • 4h Kar A, Sayyed IA, Lo WF, Kaiser HM, Beller M, Tse MK. Org. Lett. 2007; 9: 3405
    • 4i Huang F, Batey RA. Tetrahedron 2007; 63: 7667
    • 4j Bian M, Xu F, Ma C. Synthesis 2007; 2951
    • 4k Reeves DC, Rodriguez S, Heewon L, Haddad N, Krishnamurthy D, Senayake CH. Tetrahedron Lett. 2009; 50: 2870
    • 5a Ballini R, Marcantoni E, Petrin M. Tetrahedron 1989; 45: 6791
    • 5b Kamijo S, Al-Masum M, Yamamoto Y. Tetrahedron Lett. 1998; 39: 691
    • 5c Taniguchi T, Idota A, Ishibashi H. Org. Biomol. Chem. 2011; 9: 3151
    • 5d Li X, Xu X, Zhou C. Chem. Commun. 2012; 48: 12240
    • 7a Yang FL, Tian SK. Angew. Chem. Int. Ed. 2013; 125: 5029
    • 7b Singh N, Singh R, Raghuvanshi DS, Singh KN. Org. Lett. 2013; 15: 5874
  • 8 Beaulieu C, Guay D, Wang ZY, Evans DA. Tetrahedron Lett. 2004; 45: 3233
  • 9 General Procedure Arylboronic acids (1.2 mmol), arylsulfonyl hydrazides (1.0 mmol), cupric acetate (1.5 mmol), and EtOH (2.0 mL) were taken in a 25 mL two-neck flask. The reaction mixture was stirred at r.t. for 6 h in air. The solution was evaporated under reduced pressure and H2O (20 mL) was added, and then the mixture was extracted with EtOAc (4 10 mL). The extracts were combined and washed with brine (3 10 mL), dried over MgSO4, filtered, evaporated, and purified by chromatog-raphy on silica gel to obtain the desired products with EtOAc–hexane (v/v = 1:5 to 1:10). The products were characterized by their spectral and analytical data and compared with those of the known compounds (see Supporting Information). Typical Data for Representative Compound: p-Ethyl-phenyl p-Tolyl Sulfone (Table 2, Entry 4) 1H NMR (300 MHz, CDCl3): δ = 7.85–7.81 (m, 4 H), 7.31–7.27 (m, 4 H), 2.68–2.66 (m, 2 H), 2.38 (s, 3 H), 1.22 (m, 3 H). 13C NMR (75 MHz, CDCl3): δ = 144.0, 139.1, 139.0, 129.9, 128.7, 127.6, 28.8, 21.6, 15.1. GC–MS (EI): m/z = 260 [M+]. Anal Calcd for C15H16O2S C: 69.20; H, 6.19. Found: C, 69.12; H, 6.15.