Synlett 2014; 25(08): 1150-1154
DOI: 10.1055/s-0033-1341065
letter
© Georg Thieme Verlag Stuttgart · New York

Allylic Substitution of Esters Derived from 2-Bromocyclohex-2-enol with Aryl Copper Reagents and Synthetic Utilization of the Derived anti SN2′ Products

Atsushi Ikoma
Department of Bioengineering, Tokyo Institute of Technology, Box B52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan   Fax: +81(45)9245789   Email: ykobayas@bio.titech.ac.jp
,
Yuichi Kobayashi*
Department of Bioengineering, Tokyo Institute of Technology, Box B52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan   Fax: +81(45)9245789   Email: ykobayas@bio.titech.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 23 January 2014

Accepted after revision: 03 March 2014

Publication Date:
03 April 2014 (online)


Abstract

Allylic substitution of esters derived from 2-bromocyclohex-2-enol with PhMgBr-based copper reagent was investigated to find high anti SN2′ selectivity with the diethyl phosphate, whereas other esters such as picolinate, acetate, and mesylate resulted in partial racemization or recovery of the starting esters. This protocol was applied to the copper reagent derived from 2-Me-4-MeOC6H3MgBr and CuBr·SMe2 and the olefin part of the anti SN2′ product was cleaved for a synthesis of patchouli alcohol.

Supporting Information

 
  • References and Notes

    • 1a Holub N, Neidhöfer J, Blechert S. Org. Lett. 2005; 7: 1227
    • 1b Nicolaou KC, Ding H, Richard J.-A, Chen DY.-K. J. Am. Chem. Soc. 2010; 132: 3815
    • 2a Yang D, Micalizio GC. Chem. Commun. 2013; 49: 8857
    • 2b Schwizer D, Patton JT, Cutting B, Smieško M, Wagner B, Kato A, Weckerle C, Binder FP. C, Rabbani S, Schwardt O, Magnani JL, Ernst B. Chem. Eur. J. 2012; 18: 1342
    • 2c Günes Y, Polat MF, Sahin E, Fleming FF, Altundas R. J. Org. Chem. 2010; 75: 7092
    • 2d Noheda P, García-Ruiz G, Pozuelo MC, Abbassi K, Pascual-Alfonso E, Alonso JM, Jiménez-Barbero J. J. Org. Chem. 1998; 63: 6772
    • 2e Paquette LA, Kuo LH, Hamme AT. II, Kreuzholz R, Doyon J. J. Org. Chem. 1997; 62: 1730
    • 2f Liu H, Wang L, Tong X. Chem. Commun. 2011; 47: 12206
    • 2g Yagoubi M, Cruz AC. F, Nichols PL, Elliott RL, Willis MC. Angew. Chem. Int. Ed. 2010; 49: 7958
    • 2h Chen MZ, McLaughlin M, Takahashi M, Tarselli MA, Yang D, Umemura S, Micalizio GC. J. Org. Chem. 2010; 75: 8048
    • 2i Nishimata T, Sato Y, Mori M. J. Org. Chem. 2004; 69: 1837
    • 2j Koreeda M, Wang Y, Zhang L. Org. Lett. 2002; 4: 3329
    • 2k Suffert J, Salem B, Klotz P. J. Am. Chem. Soc. 2001; 123: 12107
    • 2l Murphy JA, Scott KA, Sinclair RS, Martin CG, Kennedy AR, Lewis N. J. Chem. Soc., Perkin Trans. 1 2000; 2395
    • 2m Carreño MC, Urbano A, Vitta CD. J. Org. Chem. 1998; 63: 8320
    • 2n Nwokogu GC. J. Org. Chem. 1985; 50: 3900

      Recent syntheses:
    • 3a Green JC, Jiménez-Alonso S, Brown ER, Pettus TR. R. Org. Lett. 2011; 13: 5500
    • 3b Soga K, Kanematsu M, Yoshida M, Shishido K. Synlett 2011; 1171
    • 3c Osaka M, Kanematsu M, Yoshida M, Shishido K. Tetrahedron: Asymmetry 2010; 21: 2319
    • 3d Marcoux D, Goudreau SR, Charette AB. J. Org. Chem. 2009; 74: 8939
    • 3e Vyvyan JR, Loitz C, Looper RE, Mattingly CS, Peterson EA, Staben ST. J. Org. Chem. 2004; 69: 2461
    • 3f Nagumo S, Ono M, Kakimoto Y, Furukawa T, Hisano T, Mizukami M, Kawahara N, Akita H. J. Org. Chem. 2002; 67: 6618
    • 3g Ono M, Ogura Y, Hatogai K, Akita H. Chem. Pharm. Bull. 2001; 49: 1581
    • 3h Takabatake K, Nishi I, Shindo M, Shishido K. J. Chem. Soc., Perkin Trans. 1 2000; 1807
    • 4a Calaza MI, Hupe E, Knochel P. Org. Lett. 2003; 5: 1059
    • 4b Calaza MI, Yang X, Soorukram D, Knochel P. Org. Lett. 2004; 6: 529
    • 4c Soorukram D, Knochel P. Org. Lett. 2004; 6: 2409
    • 4d Soorukram D, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 3686
    • 5a Feng C, Kobayashi Y. J. Org. Chem. 2013; 78: 3755
    • 5b Wang Q, Kobayashi Y. Org. Lett. 2011; 13: 6252
    • 5c Kaneko Y, Kiyotsuka Y, Acharya HP, Kobayashi Y. Chem. Commun. 2010; 46: 5482
    • 5d Kiyotsuka Y, Kobayashi Y. J. Org. Chem. 2009; 74: 7489
    • 5e Hyodo T, Kiyotsuka Y, Kobayashi Y. Org. Lett. 2009; 11: 1103
    • 5f Kiyotsuka Y, Katayama Y, Acharya HP, Hyodo T, Kobayashi Y. J. Org. Chem. 2009; 74: 1939
    • 5g Kiyotsuka Y, Acharya HP, Katayama Y, Hyodo T, Kobayashi Y. Org. Lett. 2008; 10: 1719
  • 6 Cahiez G, Avedissian H. Synthesis 1998; 1199
  • 7 Berti G, Macchia B, Macchia F, Monti L. J. Org. Chem. 1968; 33: 4045
  • 8 Compound 10a in the literature7 was converted into the known (S)-2-phenyladipic acid for elucidation of the absolute configuration.
  • 9 Additionally, our designation of the R configuration to 6 correlated the R configuration with the dextrorotatory (+) property: [α]D 20 +107 (c 0.33, CHCl3) for 74% ee of 6. However, the S configuration was assigned to the same dextrorotatory 6 {[α]D 22 +140.8 (c 1.02, CHCl3) for 96% ee} in the literature10 probably by speculation.
  • 10 Falciola CA, Tissot-Croset K, Reyneri H, Alexakis A. Adv. Synth. Catal. 2008; 350: 1090
  • 11 Preliminary, the oxidative cleavage of 3a successfully afforded the methyl ester i in 73% yield (Scheme 7).
    • 12a Srikrishna A, Satyanarayana G. Tetrahedron: Asymmetry 2005; 16: 3992
    • 12b Kaliappan KP, Rao GS. R. S. J. Chem. Soc., Perkin Trans. 1 1997; 1385
    • 12c Magee TV, Stork G, Fludzinski P. Tetrahedron Lett. 1995; 36: 7607
    • 12d Cory RM, Bailey MD, Tse DW. C. Tetrahedron Lett. 1990; 31: 6839
    • 12e Niwa H, Hasegawa T, Ban N, Yamada K. Tetrahedron 1987; 43: 825
    • 12f Yamada K, Kyotani Y, Manabe S, Suzuki M. Tetrahedron 1979; 35: 293
    • 13a Faraldos JA, Wu S, Chappell J, Coates RM. J. Am. Chem. Soc. 2010; 132: 2998
    • 13b Xian Y.-F, Li Y.-C, Ip S.-P, Lin Z.-X, Lai X.-P, Su Z.-R. Exp. Ther. Med. 2011; 2: 545
    • 13c Jeong JB, Shin YK, Lee S.-H. Food Chem. Toxicol. 2013; 55: 229
  • 14 Difference in reactivity of the ethyl and phenyl phosphates (2E and 11) was elucidated by the substitution using an insufficient quantity of the copper reagent derived from PhMgBr (2.0 equiv) and CuBr·SMe2 (2.3 equiv) for 3.5 h to afford a 13:87 mixture of 3a and 2E and a 47:53 mixture of 3a and 11, respectively.
  • 15 Molander GA, Felix L. J. Org. Chem. 2005; 70: 3950
  • 16 General Procedure To an ice-cold suspension of CuBr·SMe2 (114 mg, 0.555 mmol) in THF (4 mL) was added PhMgBr (0.68 mL, 0.703 M in THF, 0.48 mmol) dropwise. The mixture was stirred at 0 °C for 30 min and cooled to –40 °C. A solution of phosphate 2E (95% ee, 49.7 mg, 0.159 mmol) in THF (4 mL) was added to the mixture dropwise. After 3 h at 0 °C the reaction was quenched by addition of sat. NH4Cl and purification of the crude product by chromatography afforded 3a (34.9 mg, 93%): 89% ee by HPLC; 94% CT. 1H NMR (400 MHz, CDCl3): δ = 1.50–1.68 (m, 2 H), 1.76–1.85 (m, 1 H), 2.09–2.27 (m, 3 H), 3.66–3.76 (m, 1 H), 6.35 (dt, J = 1, 4 Hz, 1 H), 7.21–7.27 (m, 3 H), 7.30–7.36 (m, 2 H). 13C-APT NMR (100 MHz, CDCl3): δ = 17.9 (–), 27.8 (–), 33.9 (–), 49.8 (+), 124.4 (–), 126.7 (+), 128.3 (+), 128.4 (+), 132.0 (+), 143.4 (–).