Fortschr Neurol Psychiatr 2014; 82(6): 323-329
DOI: 10.1055/s-0034-1366372
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Satellitensysteme der Basalganglien – Anatomische Einordnung, klinische Relevanz

Satellite Systems of the Basal Ganglia – Anatomic Position, Clinical Relevance
E. A. Pelzer
1   Kortikale Netzwerke, Max-Planck-Institut für neurologische Forschung, Köln
,
A. Hintzen
1   Kortikale Netzwerke, Max-Planck-Institut für neurologische Forschung, Köln
,
L. Timmermann
2   Klinik und Poliklinik für Neurologie, Universitätsklinik Köln
,
M. Tittgemeyer
1   Kortikale Netzwerke, Max-Planck-Institut für neurologische Forschung, Köln
› Author Affiliations
Further Information

Publication History

30 July 2013

13 March 2014

Publication Date:
05 June 2014 (online)

Zusammenfassung

Die Interaktion der Basalganglien mit anderen Hirnbereichen sowohl auf anatomischer als auch auf funktioneller Ebene ist weitaus komplexer als bisher vermutet. Das bisher angenommene klassische Modell der Basalganglienschleifen muss entsprechend vorliegenden Studien auf mindestens vier Nebensysteme erweitert werden, die modulierenden Einfluss auf motorisch-exekutive, assoziative und limbisch-motivationale Anteile haben: (i) ein „indirektes“ Projektionssystem, (ii) eine striato-nigro-striatale Schleife, (iii) ein hyperdirektes Projektionssystem sowie zusätzliche direkte Verbindungen zum Ncl. subthalamicus und (iv) multisynaptische Verbindungen des Cerebellums mit dem indirekten Projektionssystem. Die Betrachtung dieser Nebensysteme kann zu einem besseren Grundlagenverständnis basalganglionärer Verschaltungsprinzipien führen und potenzielle Erklärungsansätze zu bisher nicht hinreichend erklärbaren Symptomen wie z. B. Ruhetremor beim Morbus Parkinson liefern. Durch die Analyse der Satellitensysteme im Menschen entstehen zudem neue Erklärungsansätze für unter dopaminerger Therapie und Tiefer Hirnstimulation auftretende nicht-motorische Nebenwirkungen mit Möglichkeiten für neue Therapieansätze.

Abstract

The interaction of basal ganglia and other brain regions is more complex regarding anatomic and functional perspectives than previously assumed. Hence, the classical basal ganglia model has to be extended to at least four satellite systems modulating motor-executive, associative and limbic-motivational brain regions: (i) an indirect projection system, (ii) a striato-nigro-striatal loop, (iii) a “hyperdirect” projection system as well as additional projections to the subthalamic nucleus and (iv) multisynaptic connections from the cerebellum exerting influence on the indirect projection system. The investigation of these satellite systems would be invaluable to foster our understanding of basal ganglia circuitries and may yield a better appreciation of largely opaque symptoms like resting tremor in Parkinson’s disease; analysis of these anatomic pathways and functional implications may facilitate explanatory model approaches to side effects due to dopaminergic therapy and deep brain stimulation in humans and thereby offer the possibility for new therapeutic approaches in movement disorders.

 
  • Literatur

  • 1 Hornykiewicz O. Dopamine, Levodopa and Parkinson's Disease. ACNR 2007; 6: 14
  • 2 Kreitzer AC. Physiology and pharmacology of striatal neurons. Annu Rev Neurosci 2009; 32: 127-147
  • 3 Joel D, Weiner I. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 1999; 96: 451-474
  • 4 Alexander G, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990; 13: 266-271
  • 5 Muzerengi S, Contrafatto D, Chaudhuri K. Non-motor symptoms: identification and management. Parkinsonism & Related Disorders 2007; 13: S450-S456
  • 6 Penney JB, Young AB. Striatal inhomogeneities and basal ganglia function. Mov Disord 1986; 1: 3-15
  • 7 Bolam JP, Hanley JJ, Booth P et al. Synaptic organisation of the basal ganglia. Neuroimage 2000; 196: 527-542
  • 8 Lévesque M, Parent A. The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci USA 2005; 102: 11888-11893
  • 9 Nieuwenhuys R, Voogd J, van Huijzen C. The Human Central Nervous System. Springer 2008; 440
  • 10 Takakusaki K, Saitoh K, Harada H et al. Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res 2004; 50: 137-151
  • 11 Redgrave P, Coizet V, Comoli E et al. Interactions between the Midbrain Superior Colliculus and the Basal Ganglia. Front Neuroanat 2010; 4: 132
  • 12 DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol 2007; 64: 20-24
  • 13 Kreitzer AC, Malenka RC. Striatal plasticity and basal ganglia circuit function. Neuron 2008; 60: 543
  • 14 Surmeier DJ, Ding J, Day M et al. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 2007; 30: 228-235
  • 15 Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 2011; 34: 441-466
  • 16 Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 366-375
  • 17 Perreault ML, Hasbi A, O'Dowd BF et al. The dopamine d1-d2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in Basal Ganglia. Front Neuroanat 2011; 5: 31
  • 18 Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. Journal of Neuroscience 2000; 20: 2369-2382
  • 19 Haber SN, Rauch SL. Neurocircuitry: a window into the networks underlying neuropsychiatric disease. Neuropsychopharmacol 2010; 35: 1-3
  • 20 Shabel SJ, Proulx CD, Trias A et al. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron 2012; 74: 475-481
  • 21 Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci Res 2002; 43: 111-117
  • 22 Forstmann BU, Anwander A, Schäfer A et al. Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. Proc Natl Acad Sci USA 2010; 107: 15916-15920
  • 23 Aron AR, Behrens TE, Smith S et al. Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci 2007; 27: 3743-3752
  • 24 Forstmann BU, Keuken MC, Jahfari S et al. Cortico-subthalamic white matter tract strength predicts interindividual efficacy in stopping a motor response. Neuroimage 2012; 60: 370-375
  • 25 Mathai A, Smith Y. The corticostriatal and corticosubthalamic pathways: two entries, one target. So what?. Front Syst Neurosci 2011; 5: 64
  • 26 Seger CA, Spiering BJ. A critical review of habit learning and the Basal Ganglia. Front Syst Neurosci 2011; 5: 66
  • 27 Jahfari S, Waldorp L, van den Wildenberg WP et al. Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. J Neurosci 2011; 31: 6891-6899
  • 28 Moran RJ, Mallet N, Litvak V et al. Alterations in brain connectivity underlying beta oscillations in Parkinsonism. PLoS Comput Biol 2011; 7: e1002124
  • 29 Monakow KH, Akert K, Künzle H. Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in Macaca fascicularis. Exp Brain Res 1979; 34: 91-105
  • 30 Féger J, Bevan M, Crossman AR. The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: a comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study. Neuroscience 1994; 60: 125-132
  • 31 Coizet V, Graham JH, Moss J et al. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. Journal of Neuroscience 2009; 29: 5701-5709
  • 32 Lambert C, Zrinzo L, Nagy Z et al. Confirmation of functional zones within the human subthalamic nucleus: Patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage 2012; 60: 83-94
  • 33 Keuken MC, Uylings HBM, Geyer S et al. Are there three subdivisions in the primate subthalamic nucleus?. Front Neuroanat 2012; 6: 14
  • 34 Hoshi E, Tremblay L, Féger J et al. The cerebellum communicates with the basal ganglia. Nat Neurosci 2005; 8: 1491-1493
  • 35 Pelzer EA, Hintzen A, Goldau M et al. Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci 2013;
  • 36 Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci USA 2010; 107: 8452-8456
  • 37 Oertel WH, Deuschl G, Poewe W. Parkinson-Syndrome und andere Bewegungsstörungen. Stuttgart: Thieme; 2011. 10.
  • 38 Morrish PK, Sawle GV, Brooks DJ. Clinical and [18F] dopa PET findings in early Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry 1995; 59: 597-600
  • 39 Wasner G, Deuschl G. Pains in Parkinson disease – many syndromes under one umbrella. Nat Rev Neurol 2012; 8: 284-294
  • 40 Friedman DP, Aggleton JP, Saunders RC. Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the Macaque brain. Journal of Comparative Neurology 2002; 450: 345-365
  • 41 Grove EA. Neural associations of the substantia innominata in the rat: afferent connections. Journal of Comparative Neurology 1988; 277: 315-346
  • 42 Lisman JE, Grace AA. The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory. Neuroimage 2005; 46: 703-713
  • 43 Berendse HW, Groenewegen HJ. Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 1990; 299: 187-228
  • 44 Everitt BJ, Parkinson JA, Olmstead MC et al. Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann N Y Acad Sci 1999; 877: 412-438
  • 45 Fiorillo CD, Tobler PN, Schultz W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 2003; 299: 1898-1902
  • 46 Helmich RC, Hallett M, Deuschl G et al. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits?. Brain 2012; 135: 3206-3226
  • 47 Helmich RC, Janssen MJR, Oyen WJG et al. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol 2011; 69: 269-281
  • 48 Wu T, Hallett M. The cerebellum in Parkinson's disease. Brain 2013; 136: 696-709
  • 49 Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci 2011; 34: 389-412
  • 50 Lemke MR. Depressive symptoms in Parkinson's disease. Eur J Neurol 2008; 15 (Suppl. 01) 21-25
  • 51 Stansley BJ, Yamamoto BK. Decrease in serotonin neurons in the rat dorsal raphe after chronic L-dopa. SFN Abstract 33014 2013;
  • 52 Sano H, Chiken S, Hikida T et al. Signals through the striatopallidal indirect pathway stop movements by phasic excitation in the substantia nigra. Journal of Neuroscience 2013; 33: 7583-7594
  • 53 Mallet L, Schüpbach M, N'Diaye K et al. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci USA 2007; 104: 10661-10666
  • 54 Coenen VA, Panksepp J, Hurwitz TA et al. Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression. J Neuropsychiatry Clin Neurosci 2012; 24: 223-236