Aktuelle Rheumatologie 2014; 39(01): 27-36
DOI: 10.1055/s-0034-1367017
Übersichtsarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Metabolische Erkrankungen in der Osteologie

Metabolic Diseases in Osteology
J. Detert
1   Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Berlin
,
P. Klaus
1   Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Berlin
,
K. Loddenkemper
1   Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Berlin
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
17. Februar 2014 (online)

Zusammenfassung

Metabolische Erkrankungen des Knochenstoffwechsels führen zur einer Veränderung der Knochenstabilität. Die Knochenstabilität beschreibt die Frakturresistenz des Knochens und wird durch 3 Faktoren bestimmt: Quantität, Qualität und Umsatz. Die Knochenquantität kann mithilfe der Osteodensitometrie (Dual-energy X-Ray Absorptiometrie, DXA) als Knochenmineraldichte ermittelt werden. Die DXA gilt als anerkanntes Verfahren zur Ermittlung des Frakturrisikos. Struktur- und Materialbedingungen des Knochens definieren dagegen die Knochenqualität. Der postmenopausale Östrogenmangel gehört sicherlich zu den häufigsten und bekanntesten Risikofaktoren für die Entwicklung einer Osteoporose. Aber auch andere, seltenere Krankheitsbilder können sich auf die Knochenqualität in Form von Störungen von Mineralhomöostase, Knochenumbau und Kollagensynthese auswirken. Diese Erkrankungen und die Anzahl daran erkrankter Patienten werden dagegen unterschätzt und häufig nicht rechtzeitig diagnostiziert. Von allen Osteoporosepatienten sind rund 20–30% der postmenopausalen Frauen, 50% der prä- und perimenopausalen Frauen und 50% aller Männer von zugrundeliegenden Erkrankungen und Risikofaktoren betroffen, die zur Osteoporose führen. Neben den hormonassoziierten, medikamenten- und alkoholinduzierten Ursachen gehören metabolische Erkrankungen bei diesen Patienten zu den wichtigsten Risikofaktoren für die Entwicklung einer Osteoporose. Diese Erkrankungen können angeboren oder erworben sein. Viele primär hormonelle Störungen führen z. B. zu Störungen in der metabolischen Homöostase mit daraus resultierenden osteologischen Strukturveränderungen (u. a. Diabetes mellitus, Hyper- und Hypoparathyreoidisimus, usw.). Die folgende Übersicht stellt exemplarisch einige häufige und seltene metabolische Veränderungen dar, die im Praxisalltag auftreten und an die differenzialdiagnostisch gedacht werden sollte.

Abstract

Metabolic diseases of bone metabolism lead to changes in the stability of the bone. The stability of bone describes the fracture resistance of the bone and is determined by 3 factors: quantity, quality and turnover. Bone quality can be determined with the help of osteodensitometry (dual-energy X-ray absorptiometry, DXA) as the bone mineral density. DXA is an established procedure for measuring facture risk. The structural and mineral status of bone, on the other hand, defines bone quality. Postmenopausal Oestrogen deficiency is certainly one of the most frequent and best known risk factors for the development of osteoporosis. But other rare clinical entitites may also have an effect on bone quality in the form of disorders of mineral homeostasis, bone remodelling, and collagen synthesis. These diseases and the number of persons suffering from them are often underestimated and frequently not diagnosed in good time. Among all patients with osteoporosis, about 20–30% of the postmenopausal women, 50% of the pre- and perimenopausal women and 50% of all men are affected by the underlying diseases and risk factors that lead to osteoporosis. Apart from the hormone-associated as well as drug- and alcohol-induced causes, metabolic diseases belong to the most important risk factors for the development of osteoporosis. These diseases can be hereditary or acquired. Many primary hormonal disorders lead to, e. g., dysfunctions in metabolic homeostasis with the thus resulting osteological structural changes (among others, diabetes mellitus, hyper- and hypoparathyroidism, etc.). The present review exemplarily describes some frequent and some rare metabolic changes that may arise in the daily clinical routine and which should be considered in differential diagnoses.

 
  • Literatur

  • 1 Bouxsein ML. Determinants of skeletal fragility. Best practice & research. Clinical rheumatology 2005; 19: 897-911 DOI: 10.1016/j.berh.2005.07.004.
  • 2 Felsenberg D, Boonen S. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clinical therapeutics 2005; 27: 1-11 DOI: 10.1016/j.clinthera.2004.12.020.
  • 3 Cummings SR, Karpf DB, Harris F et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. The American journal of medicine 2002; 112: 281-289
  • 4 Khosla S, Melton 3rd LJ, Riggs BL. Estrogens and bone health in men. Calcified tissue international 2001; 69: 189-192
  • 5 Schinke T, Schilling AF, Baranowsky A et al. Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nature medicine 2009; 15: 674-681 DOI: 10.1038/nm.1963.
  • 6 Sipponen P, Harkonen M. Hypochlorhydric stomach: a risk condition for calcium malabsorption and osteoporosis?. Scandinavian journal of gastroenterology 2010; 45: 133-138 DOI: 10.3109/00365520903434117.
  • 7 Anonym Magenkrebs (Magenkarzinom) www.krebsdaten.de Lesedatum 18.07.2013
  • 8 Lim JS, Kim SB, Bang HY et al. High prevalence of osteoporosis in patients with gastric adenocarcinoma following gastrectomy. World journal of gastroenterology: WJG 2007; 13: 6492-6497
  • 9 Runkel N, Colombo-Benkmann M, Huttl TP et al. Bariatric surgery. Deutsches Arzteblatt international 2011; 108: 341-346 DOI: 10.3238/arztebl.2011.0341.
  • 10 Goldner WS, O’Dorisio TM, Dillon JS et al. Severe metabolic bone disease as a long-term complication of obesity surgery. Obesity surgery 2002; 12: 685-692 DOI: 10.1381/096089202321019693.
  • 11 Folli F, Sabowitz BN, Schwesinger W et al. Bariatric surgery and bone disease: from clinical perspective to molecular insights. Int J Obes (Lond) 2012; 36: 1373-1379 DOI: 10.1038/ijo.2012.115.
  • 12 Sahi T. Genetics and epidemiology of adult-type hypolactasia. Scandinavian journal of gastroenterology Supplement 1994; 202: 7-20
  • 13 Savilahti E, Launiala K, Kuitunen P. Congenital lactase deficiency. A clinical study on 16 patients. Archives of disease in childhood 1983; 58: 246-252
  • 14 Bhatnagar S, Aggarwal R. Lactose intolerance. BMJ 2007; 334: 1331-1332 DOI: 10.1136/bmj.39252.524375.80.
  • 15 Montalto M, Curigliano V, Santoro L et al. Management and treatment of lactose malabsorption. World journal of gastroenterology: WJG 2006; 12: 187-191
  • 16 Heyman MB. Lactose intolerance in infants, children, and adolescents. Pediatrics 2006; 118: 1279-1286 DOI: 10.1542/peds.2006-1721.
  • 17 Obermayer-Pietsch BM. Osteologische Aspekte der Laktoseintoleranz. In: Spectrum Osteoporose 2010; 12-14
  • 18 Enattah N, Pekkarinen T, Valimaki MJ et al. Genetically defined adult-type hypolactasia and self-reported lactose intolerance as risk factors of osteoporosis in Finnish postmenopausal women. European journal of clinical nutrition 2005; 59: 1105-1111 DOI: 10.1038/sj.ejcn.1602219.
  • 19 Kudlacek S, Freudenthaler O, Weissboeck H et al. Lactose intolerance: a risk factor for reduced bone mineral density and vertebral fractures?. Journal of gastroenterology 2002; 37: 1014-1019 DOI: 10.1007/s005350200171.
  • 20 Kull M, Kallikorm R, Lember M. Impact of molecularly defined hypolactasia, self-perceived milk intolerance and milk consumption on bone mineral density in a population sample in Northern Europe. Scandinavian journal of gastroenterology 2009; 44: 415-421 DOI: 10.1080/00365520802588117.
  • 21 Wilt TJ, Shaukat A, Shamliyan T et al. Lactose intolerance and health. Evidence report/technology assessment 2010; 1-410
  • 22 McCabe LD, Martin BR, McCabe GP et al. Dairy intakes affect bone density in the elderly. The American journal of clinical nutrition 2004; 80: 1066-1074
  • 23 Obermayer-Pietsch BM, Gugatschka M, Reitter S et al. Adult-type hypolactasia and calcium availability: decreased calcium intake or impaired calcium absorption?. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2007; 18: 445-451 DOI: 10.1007/s00198-006-0251-6.
  • 24 Corazza GR, Di Stefano M, Maurino E et al. Bones in coeliac disease: diagnosis and treatment. Best practice & research. Clinical gastroenterology 2005; 19: 453-465 DOI: 10.1016/j.bpg.2005.01.002.
  • 25 Ciacci C, Maurelli L, Klain M et al. Effects of dietary treatment on bone mineral density in adults with celiac disease: factors predicting response. The American journal of gastroenterology 1997; 92: 992-996
  • 26 Selby PL, Davies M, Adams JE et al. Bone loss in celiac disease is related to secondary hyperparathyroidism. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 1999; 14: 652-657 DOI: 10.1359/jbmr.1999.14.4.652.
  • 27 Kinsey L, Burden ST, Bannerman E. A dietary survey to determine if patients with coeliac disease are meeting current healthy eating guidelines and how their diet compares to that of the British general population. European journal of clinical nutrition 2008; 62: 1333-1342 DOI: 10.1038/sj.ejcn.1602856.
  • 28 Bernstein CN, Leslie WD. The pathophysiology of bone disease in gastrointestinal disease. European journal of gastroenterology & hepatology 2003; 15: 857-864 DOI: 10.1097/01.meg.0000059183.46867.09.
  • 29 Jatla M, Zemel BS, Bierly P et al. Bone mineral content deficits of the spine and whole body in children at time of diagnosis with celiac disease. Journal of pediatric gastroenterology and nutrition 2009; 48: 175-180 DOI: 10.1097/MPG.0b013e318177e621.
  • 30 Fisher AA, Davis MW, Budge MM. Should we screen adults with osteoporotic fractures for coeliac disease?. Gut 2004; 53: 154-155
  • 31 Garcia-Manzanares A, Tenias JM, Lucendo AJ. Bone mineral density directly correlates with duodenal Marsh stage in newly diagnosed adult celiac patients. Scandinavian journal of gastroenterology 2012; 47: 927-936 DOI: 10.3109/00365521.2012.688217.
  • 32 Walters JR, Banks LM, Butcher GP et al. Detection of low bone mineral density by dual energy x ray absorptiometry in unsuspected suboptimally treated coeliac disease. Gut 1995; 37: 220-224
  • 33 West J, Logan RF, Card TR et al. Fracture risk in people with celiac disease: a population-based cohort study. Gastroenterology 2003; 125: 429-436
  • 34 Taranta A, Fortunati D, Longo M et al. Imbalance of osteoclastogenesis-regulating factors in patients with celiac disease. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2004; 19: 1112-1121 DOI: 10.1359/JBMR.040319.
  • 35 Coen G, Ballanti P, Balducci A et al. Serum osteoprotegerin and renal osteodystrophy. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – European Renal Association 2002; 17: 233-238
  • 36 Feuerherm AJ, Borset M, Seidel C et al. Elevated levels of osteoprotegerin (OPG) and hepatocyte growth factor (HGF) in rheumatoid arthritis. Scandinavian journal of rheumatology 2001; 30: 229-234
  • 37 Ueland T, Bollerslev J, Godang K et al. Increased serum osteoprotegerin in disorders characterized by persistent immune activation or glucocorticoid excess – possible role in bone homeostasis. European journal of endocrinology/European Federation of Endocrine Societies 2001; 145: 685-690
  • 38 Szalay F, Hegedus D, Lakatos PL et al. High serum osteoprotegerin and low RANKL in primary biliary cirrhosis. Journal of hepatology 2003; 38: 395-400
  • 39 Green PH, Jabri B. Coeliac disease. Lancet 2003; 362: 383-391 DOI: 10.1016/S0140-6736(03)14027-5.
  • 40 Alaedini A, Green PH. Narrative review: celiac disease: understanding a complex autoimmune disorder. Annals of internal medicine 2005; 142: 289-298
  • 41 Audi L, Vargas DM, Gussinye M et al. Clinical and biochemical determinants of bone metabolism and bone mass in adolescent female patients with anorexia nervosa. Pediatric research 2002; 51: 497-504 DOI: 10.1203/00006450-200204000-00016.
  • 42 Grinspoon S, Thomas E, Pitts S et al. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Annals of internal medicine 2000; 133: 790-794
  • 43 Mitan LA. Menstrual dysfunction in anorexia nervosa. Journal of pediatric and adolescent gynecology 2004; 17: 81-85 DOI: 10.1016/j.jpag.2004.01.003.
  • 44 Lucas AR, Melton 3rd LJ, Crowson CS et al. Long-term fracture risk among women with anorexia nervosa: a population-based cohort study. Mayo Clinic proceedings. Mayo Clinic 1999; 74: 972-977 DOI: 10.4065/74.10.972.
  • 45 Miller KK, Grinspoon SK, Ciampa J et al. Medical findings in outpatients with anorexia nervosa. Archives of internal medicine 2005; 165: 561-566 DOI: 10.1001/archinte.165.5.561.
  • 46 Seeman E. Is a change in bone mineral density a sensitive and specific surrogate of anti-fracture efficacy?. Bone 2007; 41: 308-317 DOI: 10.1016/j.bone.2007.06.010.
  • 47 Zhang Y, Proenca R, Maffei M et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425-432 DOI: 10.1038/372425a0.
  • 48 Chan JL, Mantzoros CS. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet 2005; 366: 74-85 DOI: 10.1016/S0140-6736(05)66830-4.
  • 49 Stock S, Leichner P, Wong AC et al. Ghrelin, peptide YY, glucose-dependent insulinotropic polypeptide, and hunger responses to a mixed meal in anorexic, obese, and control female adolescents. The Journal of clinical endocrinology and metabolism 2005; 90: 2161-2168 DOI: 10.1210/jc.2004-1251.
  • 50 Nakazato M, Murakami N, Date Y et al. A role for ghrelin in the central regulation of feeding. Nature 2001; 409: 194-198 DOI: 10.1038/35051587.
  • 51 Komaki G, Matsumoto Y, Nishikata H et al. Orexin-A and leptin change inversely in fasting non-obese subjects. European journal of endocrinology/European Federation of Endocrine Societies 2001; 144: 645-651
  • 52 Jayasinghe Y, Grover SR, Zacharin M. Current concepts in bone and reproductive health in adolescents with anorexia nervosa. BJOG: an international journal of obstetrics and gynaecology 2008; 115: 304-315 DOI: 10.1111/j.1471-0528.2007.01601.x.
  • 53 Liu SL, Lebrun CM. Effect of oral contraceptives and hormone replacement therapy on bone mineral density in premenopausal and perimenopausal women: a systematic review. British journal of sports medicine 2006; 40: 11-24 DOI: 10.1136/bjsm.2005.020065.
  • 54 Balasch J. Sex steroids and bone: current perspectives. Human reproduction update 2003; 9: 207-222
  • 55 Galusca B, Bossu C, Germain N et al. Age-related differences in hormonal and nutritional impact on lean anorexia nervosa bone turnover uncoupling. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2006; 17: 888-896 DOI: 10.1007/s00198-005-0063-0.
  • 56 Misra M, Miller KK, Almazan C et al. Alterations in cortisol secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. The Journal of clinical endocrinology and metabolism 2004; 89: 4972-4980 DOI: 10.1210/jc.2004-0723.
  • 57 Misra M, Miller KK, Stewart V et al. Ghrelin and bone metabolism in adolescent girls with anorexia nervosa and healthy adolescents. The Journal of clinical endocrinology and metabolism 2005; 90: 5082-5087 DOI: 10.1210/jc.2005-0512.
  • 58 Gordon CM, Goodman E, Emans SJ et al. Physiologic regulators of bone turnover in young women with anorexia nervosa. The Journal of pediatrics 2002; 141: 64-70 DOI: 10.1067/mpd.2002.125003.
  • 59 Gordon CM, Grace E, Emans SJ et al. Effects of oral dehydroepiandrosterone on bone density in young women with anorexia nervosa: a randomized trial. The Journal of clinical endocrinology and metabolism 2002; 87: 4935-4941
  • 60 Gordon CM, Grace E, Emans SJ et al. Changes in bone turnover markers and menstrual function after short-term oral DHEA in young women with anorexia nervosa. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 1999; 14: 136-145 DOI: 10.1359/jbmr.1999.14.1.136.
  • 61 Remer T, Boye KR, Hartmann M et al. Adrenarche and bone modeling and remodeling at the proximal radius: weak androgens make stronger cortical bone in healthy children. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2003; 18: 1539-1546 DOI: 10.1359/jbmr.2003.18.8.1539.
  • 62 Vergely N, Lafage-Proust MH, Caillot-Augusseau A et al. Hypercorticism blunts circadian variations of osteocalcin regardless of nutritional status. Bone 2002; 30: 428-435
  • 63 Pirlich M, Schutz T, Norman K et al. The German hospital malnutrition study. Clin Nutr 2006; 25: 563-572 DOI: 10.1016/j.clnu.2006.03.005.
  • 64 Kaiser MJ, Bauer JM, Ramsch C et al. Validation of the Mini Nutritional Assessment short-form (MNA-SF): a practical tool for identification of nutritional status. The journal of nutrition, health & aging 2009; 13: 782-788
  • 65 Volkert D. Practical guideline for nutritional care in geriatric institutions. Zeitschrift für Gerontologie und Geriatrie 2009; 42: 77-87 DOI: 10.1007/s00391-008-0524-0.
  • 66 Volkert D, Frauenrath C, Oster P et al. Malnutrition in the aged – effect of physical, mental, psychological and social factors. Zeitschrift für Gerontologie 1989; 22: 6-10
  • 67 Stratton RJ, Green CJ, Elia M. Disease-related malnutrition: an evidence-based approach to treatment. In: Stratton RJ, Green CJ, Elia M. Hrsg Prevalence of disease-related malnutrition. Wallingford, UK: CABI Publishing; 2003: 35-92
  • 68 Bauer JM, Haack A, Winning K et al. Impaired postprandial response of active ghrelin and prolonged suppression of hunger sensation in the elderly. The journals of gerontology Series A, Biological sciences and medical sciences 2010; 65: 307-311 DOI: 10.1093/gerona/glp174.
  • 69 El Osta N, Hennequin M, Tubert-Jeannin S et al. The pertinence of oral health indicators in nutritional studies in the elderly. Clin Nutr 2013; DOI: 10.1016/j.clnu.2013.05.012.
  • 70 Guigoz Y, Lauque S, Vellas BJ. Identifying the elderly at risk for malnutrition. The Mini Nutritional Assessment. Clinics in geriatric medicine 2002; 18: 737-757
  • 71 Pogue SJ. Vitamin D synthesis in the elderly. Dermatology nursing/Dermatology Nurse’s Association 1995; 7: 103-105
  • 72 Fathalla B, Hamada K, Vannier E et al. Effects of aging and cytokine blockade on inflammatory cachexia. Clinical and experimental rheumatology 2004; 22: 85-90
  • 73 Thomas DR. Loss of skeletal muscle mass in aging: examining the relationship of starvation, sarcopenia and cachexia. Clin Nutr 2007; 26: 389-399 DOI: 10.1016/j.clnu.2007.03.008.
  • 74 Bauer JM, Wirth R, Volkert D et al. Malnutrition, sarcopenia and cachexia in the elderly: from pathophysiology to treatment. Conclusions of an international meeting of experts, sponsored by the BANSS Foundation. Dtsch Med Wochenschr 2008; 133: 305-310 DOI: 10.1055/s-2008-1046711.
  • 75 Bosaeus I, Wilcox G, Rothenberg E et al. Skeletal muscle mass in hospitalized elderly patients: Comparison of measurements by single-frequency BIA and DXA. Clin Nutr 2013; DOI: 10.1016/j.clnu.2013.06.007.
  • 76 Mughal MZ. Rickets. Current osteoporosis reports 2011; 9: 291-299 DOI: 10.1007/s11914-011-0081-0.
  • 77 Schnabel D, Haffner D. Rickets. Diagnosis and therapy. Der Orthopade 2005; 34: 703-714 quiz 715-706
  • 78 Takeda E, Yamamoto H, Taketani Y et al. Vitamin D-dependent rickets type I and type II. Acta paediatrica Japonica; Overseas edition 1997; 39: 508-513
  • 79 Alman BA, Goldberg MJ. Metabolic and endocrine abnormalities. In: Lovell WW, Winter RB, Morrissy RT. et al Hrsg Lovell and Winter’s Pediatric Orthopaedics. 6. Aufl. Philadelphia: Lippincott Williams & Wilkins; 2006: 167-203
  • 80 Boonen S, Bischoff-Ferrari HA, Cooper C et al. Addressing the musculoskeletal components of fracture risk with calcium and vitamin D: a review of the evidence. Calcified tissue international 2006; 78: 257-270 DOI: 10.1007/s00223-005-0009-8.
  • 81 Cianferotti L, Marcocci C. Subclinical vitamin D deficiency. Best practice & research. Clinical endocrinology & metabolism 2012; 26: 523-537 DOI: 10.1016/j.beem.2011.12.007.
  • 82 Holick MF, Binkley NC, Bischoff-Ferrari HA et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. The Journal of clinical endocrinology and metabolism 2011; 96: 1911-1930 DOI: 10.1210/jc.2011-0385.
  • 83 Anonym. DGE e.V. 2012. Neue Referenzwerte für die Nährstoffzufuhr Vitamin D. ISBN:978-3-86528-128-9
  • 84 Kim BH, Glanz K, Nehl EJ. Vitamin D beliefs and associations with sunburns, sun exposure, and sun protection. International journal of environmental research and public health 2012; 9: 2386-2395 DOI: 10.3390/ijerph9072386.
  • 85 Faurschou A, Beyer DM, Schmedes A et al. The relation between sunscreen layer thickness and vitamin D production after ultraviolet B exposure: a randomized clinical trial. The British journal of dermatology 2012; 167: 391-395 DOI: 10.1111/j.1365-2133.2012.11004.x.
  • 86 Batlle D, Haque SK. Genetic causes and mechanisms of distal renal tubular acidosis. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – European Renal Association 2012; 27: 3691-3704 DOI: 10.1093/ndt/gfs442.
  • 87 Laroche M, Cesini J, Tack I. Osteoporosis and renal tubular dysfunction. Joint, bone, spine: revue du rhumatisme 2012; 79 (Suppl. 02) S96-S98 DOI: 10.1016/S1297-319X(12)70015-5.
  • 88 Wesseling K, Bakkaloglu S, Salusky I. Chronic kidney disease mineral and bone disorder in children. Pediatr Nephrol 2008; 23: 195-207 DOI: 10.1007/s00467-007-0671-3.
  • 89 Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – European Renal Association 2012; 27: 4273-4287 DOI: 10.1093/ndt/gfs493.
  • 90 Igarashi T, Sekine T, Watanabe H. Molecular basis of proximal renal tubular acidosis. Journal of nephrology 2002; 15 (Suppl. 05) S135-S141
  • 91 van Staa TP, Selby P, Leufkens HG et al. Incidence and natural history of Paget’s disease of bone in England and Wales. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2002; 17: 465-471 DOI: 10.1359/jbmr.2002.17.3.465.
  • 92 Poor G, Donath J, Fornet B et al. Epidemiology of Paget’s disease in Europe: the prevalence is decreasing. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2006; 21: 1545-1549 DOI: 10.1359/jbmr.060704.
  • 93 Mukherjee A, Larson EA, Carlos AS et al. Congenic mice provide in vivo evidence for a genetic locus that modulates intrinsic transforming growth factor beta1-mediated signaling and bone acquisition. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2012; 27: 1345-1356 DOI: 10.1002/jbmr.1590.
  • 94 Milovanovic P, Potocnik J, Stoiljkovic M et al. Nanostructure and mineral composition of trabecular bone in the lateral femoral neck: implications for bone fragility in elderly women. Acta biomaterialia 2011; 7: 3446-3451 DOI: 10.1016/j.actbio.2011.05.028.
  • 95 Sacco SM, Horcajada MN, Offord E. Phytonutrients for bone health during ageing. British journal of clinical pharmacology 2013; 75: 697-707 DOI: 10.1111/bcp.12033.
  • 96 Eekhoff ME, van der Klift M, Kroon HM et al. Paget’s disease of bone in The Netherlands: a population-based radiological and biochemical survey – the Rotterdam Study. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2004; 19: 566-570 DOI: 10.1359/jbmr.2004.19.4.566.
  • 97 Nikander R, Sievanen H, Heinonen A et al. Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life. BMC medicine 2010; 8: 47 DOI: 10.1186/1741-7015-8-47.
  • 98 Ralston SH, Uitterlinden AG. Genetics of osteoporosis. Endocrine reviews 2010; 31: 629-662 DOI: 10.1210/er.2009-0044.
  • 99 Ralston SH. Clinical practice. Paget’s disease of bone. The New England journal of medicine 2013; 368: 644-650 DOI: 10.1056/NEJMcp1204713.
  • 100 Schwarz P, Rasmussen AQ, Kvist TM et al. Paget’s disease of the bone after treatment with Denosumab: a case report. Bone 2012; 50: 1023-1025
  • 101 Oristian DS, Sloofman LG, Zhou X et al. Ribosomal protein L29/HIP deficiency delays osteogenesis and increases fragility of adult bone in mice. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 2009; 27: 28-35 DOI: 10.1002/jor.20706.
  • 102 Massart F, Marcucci G, Brandi ML. Pharmacogenetics of bone treatments: the VDR and ERalpha gene story. Pharmacogenomics 2008; 9: 733-746 DOI: 10.2217/14622416.9.6.733.
  • 103 Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocrine reviews 2000; 21: 115-137
  • 104 Kornak U, Kasper D, Bosl MR et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 2001; 104: 205-215
  • 105 Kornak U, Schulz A, Friedrich W et al. Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Human molecular genetics 2000; 9: 2059-2063
  • 106 Dozier TS, Duncan IM, Klein AJ et al. Otologic manifestations of malignant osteopetrosis. Otology & neurotology: official publication of the American Otological Society. American Neurotology Society [and] European Academy of Otology and Neurotology 2005; 26: 762-766
  • 107 Al-Tamimi YZ, Tyagi AK, Chumas PD et al. Patients with autosomal-recessive osteopetrosis presenting with hydrocephalus and hindbrain posterior fossa crowding. Journal of neurosurgery Pediatrics 2008; 1: 103-106 DOI: 10.3171/PED-08/01/103.
  • 108 Benichou OD, Laredo JD, de Vernejoul MC. Type II autosomal dominant osteopetrosis (Albers-Schonberg disease): clinical and radiological manifestations in 42 patients. Bone 2000; 26: 87-93
  • 109 Bollerslev J, Andersen Jr PE. Radiological, biochemical and hereditary evidence of two types of autosomal dominant osteopetrosis. Bone 1988; 9: 7-13
  • 110 Del Fattore A, Peruzzi B, Rucci N et al. Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: Implications for diagnosis and treatment. Journal of medical genetics 2006; 43: 315-325
  • 111 Landa J, Margolis N, Di Cesare P. Orthopaedic management of the patient with osteopetrosis. The Journal of the American Academy of Orthopaedic Surgeons 2007; 15: 654-662
  • 112 Driessen GJ, Gerritsen EJ, Fischer A et al. Long-term outcome of haematopoietic stem cell transplantation in autosomal recessive osteopetrosis: an EBMT report. Bone marrow transplantation 2003; 32: 657-663 DOI: 10.1038/sj.bmt.1704194.
  • 113 Villa A, Guerrini MM, Cassani B et al. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcified tissue international 2009; 84: 1-12 DOI: 10.1007/s00223-008-9196-4.
  • 114 Phillipi CA, Remmington T, Steiner RD. Bisphosphonate therapy for osteogenesis imperfecta. The Cochrane database of systematic reviews. 2008; CD005088 DOI: 10.1002/14651858.CD005088.pub2.
  • 115 Marini JC, Forlino A, Cabral WA et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Human mutation 2007; 28: 209-221 DOI: 10.1002/humu.20429.
  • 116 Forlino A, Cabral WA, Barnes AM et al. New perspectives on osteogenesis imperfecta. Nature reviews Endocrinology 2011; 7: 540-557 DOI: 10.1038/nrendo.2011.81.
  • 117 Antoniazzi F, Bertoldo F, Mottes M et al. Growth hormone treatment in osteogenesis imperfecta with quantitative defect of type I collagen synthesis. The Journal of pediatrics 1996; 129: 432-439
  • 118 Paszty C, Turner CH, Robinson MK. Sclerostin: a gem from the genome leads to bone-building antibodies. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2010; 25: 1897-1904 DOI: 10.1002/jbmr.161.
  • 119 Guillot PV, Abass O, Bassett JH et al. Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 2008; 111: 1717-1725 DOI: 10.1182/blood-2007-08-105809.
  • 120 Dumitrescu CE, Collins MT. McCune-Albright syndrome. Orphanet journal of rare diseases 2008; 3: 12 DOI: 10.1186/1750-1172-3-12.
  • 121 Collins MT, Singer FR, Eugster E. McCune-Albright syndrome and the extraskeletal manifestations of fibrous dysplasia. Orphanet journal of rare diseases 2012; 7 (Suppl. 01) S4 DOI: 10.1186/1750-1172-7-S1-S4.
  • 122 Weinstein LS, Shenker A, Gejman PV et al. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. The New England journal of medicine 1991; 325: 1688-1695 DOI: 10.1056/NEJM199112123252403.
  • 123 Michou L, Brown JP. Genetics of bone diseases: Paget’s disease, fibrous dysplasia, osteopetrosis, and osteogenesis imperfecta. Joint, bone, spine: revue du rhumatisme 2011; 78: 252-258 DOI: 10.1016/j.jbspin.2010.07.010.
  • 124 Defilippi C, Chiappetta D, Marzari D et al. Image diagnosis in McCune-Albright syndrome. Journal of pediatric endocrinology & metabolism: JPEM 2006; 19 (Suppl. 02) 561-570
  • 125 Chapurlat RD. Medical therapy in adults with fibrous dysplasia of bone. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2006; 21 (Suppl. 02) P114-P119 DOI: 10.1359/jbmr.06s222.
  • 126 Fraser D. Hypophosphatasia. The American journal of medicine 1957; 22: 730-746
  • 127 Mornet E. Hypophosphatasia. Orphanet journal of rare diseases 2007; 2: 40 DOI: 10.1186/1750-1172-2-40.
  • 128 Mornet E. Hypophosphatasia: the mutations in the tissue-nonspecific alkaline phosphatase gene. Human mutation 2000; 15: 309-315 DOI: 10.1002/(SICI)1098-1004(200004)15:4<309::AID-HUMU2>3.0.CO;2-C.
  • 129 Whyte MP. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocrine reviews 1994; 15: 439-461
  • 130 Whyte MP, Mumm S, Deal C. Adult hypophosphatasia treated with teriparatide. The Journal of clinical endocrinology and metabolism 2007; 92: 1203-1208 DOI: 10.1210/jc.2006-1902.
  • 131 Whyte MP, Greenberg CR, Salman NJ et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. The New England journal of medicine 2012; 366: 904-913 DOI: 10.1056/NEJMoa1106173.