Synlett 2014; 25(20): 2938-2942
DOI: 10.1055/s-0034-1379483
letter
© Georg Thieme Verlag Stuttgart · New York

Cyanation of Unactivated Aryl Chlorides and Aryl Mesylates Catalyzed by Palladium and Hemilabile MOP-Type Ligands

Yahui Tu
a   School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China
,
Yi Zhang
b   School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. of China   Fax: +86(21)54748925   Email: xiaominxie@sjtu.edu.cn
,
Sheng Xu*
a   School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China
,
Zhaoguo Zhang
b   School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. of China   Fax: +86(21)54748925   Email: xiaominxie@sjtu.edu.cn
,
Xiaomin Xie*
b   School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. of China   Fax: +86(21)54748925   Email: xiaominxie@sjtu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 09 July 2014

Accepted after revision: 28 September 2014

Publication Date:
21 October 2014 (online)


Abstract

Palladium-catalyzed cyanation of aryl halides and pseudo halides with potassium hexacyanoferrate is described employing the hemilabile, bulky, and electron-rich MOP-type ligands. When the mixture of t-BuOH and H2O was used as the solvent and K2CO3 as the base, the MOP-type ligands showed high efficiency for the palladium-catalyzed cyanation. The effect of ligand structure was studied in detail, and 2-di-tert-butylphosphino-2′-isopropoxy-1,1′-binaphthyl was the more effective for the cyanation. The catalyst system allows the cyanation of unactivated aryl chlorides, and even aryl mesylates to occur in good yields. Furthermore, the reactivity of different arylated reagents in the catalytic system was found to be: ArBr > ArCl >> ArOMs > ArOSO2Im > ArOSO2NMe2.

Supporting Information

 
  • References

  • 1 Rappoport Z. Chemistry of the Cyano Group. John Wiley and Sons; London: 1970
  • 2 Ellis WB. J. Ind. Ecol. 1999; 3: 192
    • 3a Kim J, Kim HJ, Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948
    • 3b Ren X, Chen J, Chen F, Cheng J. Chem. Commun. 2011; 47: 6725
    • 3c Ding S.-T, Jiao N. J. Am. Chem. Soc. 2011; 133: 12374
    • 3d Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 3e Anbarasan P, Neumann H, Beller M. Chem. Eur. J. 2010; 16: 4725
    • 4a Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 4b Wen Q, Jin J, Zhang L, Luo Y, Lu P. Wang Y. 2014; 55: 1271
    • 5a Percec V, Bae J.-Y, Hill DH. J. Org. Chem. 1995; 60: 6895
    • 5b Sakakibara Y, Okuda F, Shimobayashi A, Kirino K, Sakai M, Uchino N, Takagi K. Bull. Chem. Soc. Jpn. 1988; 61: 1985
    • 5c Sakakibara Y, Sasaki K, Okuda F, Hokimoto A, Ueda T, Sakai M, Takagi K. Bull. Chem. Soc. Jpn. 2004; 77: 1013
    • 6a Erhardt S, Grushin VV, Kilpatrick AH, Macgregor SA, Marshall WJ, Roe DC. J. Am. Chem. Soc. 2008; 130: 4828
    • 6b Marcantonio KM, Frey LF, Liu Y, Chen Y, Strine J, Phenix B, Wallace DJ, Chen C.-Y. Org. Lett. 2004; 6: 3723
  • 7 Sundermeier M, Zapf A, Beller M. Angew. Chem. Int. Ed. 2003; 42: 1661
    • 8a Austin NE, Avenell KY, Boyfield I, Branch CL, Hadley MS, Jeffrey P, Johnson CN, Macdonald GJ, Nash DJ, Riley GJ, Smith AB, Stemp G, Thewlis KM, Vong AK. K, Wood MD. Bioorg. Med. Chem. Lett. 2001; 11: 685
    • 8b Fray MJ, Allen P, Bradley PR, Challenger CE, Closier M, Evans TJ, Lewis ML, Mathias JP, Nichols CL, Po-Ba YM, Snow H, Stefaniak MH, Vuong HV. Tetrahedron 2006; 62: 6869
    • 8c Harris RM, Andrews BI, Clark S, Cooke JW. B, Gray JC. S, Ng SQ. Q. Org. Process Res. Dev. 2013; 17: 1239
    • 8d Shevlin M. Tetrahedron Lett. 2010; 51: 4833
  • 9 Sundermeier M, Mutyala S, Zapf A, Spannenberg A, Beller M. J. Organomet. Chem. 2003; 684: 50
  • 10 Yang C, Williams JM. Org. Lett. 2004; 6: 2837
    • 11a Luo F, Chu C, Cheng C.-H. Organometallics 1998; 17: 1025
    • 11b Wen Q, Jin J, Hu B, Lu P, Wang Y. RSC Adv. 2012; 2: 6167
    • 12a Schareina T, Zapf A, Beller M. Chem. Commun. 2004; 1388
    • 12b Schareina T, Zapf A, Beller M. J. Organomet. Chem. 2004; 689: 4576
    • 13a Chen G, Weng J, Zheng Z, Zhu X, Cai Y, Cai J, Wan Y. Eur. J. Org. Chem. 2008; 3524
    • 13b Grossman O, Gelman D. Org. Lett. 2006; 8: 1189
    • 14a Schareina T, Jackstell R, Schulz T, Zapf A, Cotte A, Gotta M, Beller M. Adv. Synth. Catal. 2009; 351: 643
    • 14b Schareina T, Zapf A, Maegerlein W, Mueller N, Beller M. Tetrahedron Lett. 2007; 48: 1087
    • 14c Senecal TD, Shu W, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 10035
    • 14d Wang B, Zhao R, Chen B.-C, Balasubramanian B. ARKIVOC 2010; (vi): 47
    • 14e Yeung PY, So CM, Lau CP, Kwong FY. Org. Lett. 2011; 13: 648
  • 15 Zhang J, Chen X, Hu T, Zhang Y, Xu K, Yu Y, Huang J. Catal. Lett. 2010; 139: 56
    • 16a Yeung PY, So CM, Lau CP, Kwong FY. Angew. Chem. Int. Ed. 2010; 49: 8918
    • 16b So CM, Kwong FY. Chem. Soc. Rev. 2011; 40: 4963
    • 17a Hajipour AR, Rafiee F, Ruoho AE. Tetrahedron Lett. 2012; 53: 526
    • 17b Hajipour AR, Karami K, Tavakoli G, Pirisedigh A. J. Organomet. Chem. 2011; 696: 819
    • 17c Anderson BA, Bell EC, Ginah FO, Harn NK, Pagh LM, Wepsiec JP. J. Org. Chem. 1998; 63: 8224
    • 18a Cheng Y.-n, Duan Z, Li T, Wu Y. Lett. Org. Chem. 2007; 4: 352
    • 18b Yu H, Richey RN, Miller WD, Xu J, May SA. J. Org. Chem. 2011; 76: 665
    • 19a Zhu Y.-Z, Cai C. Synth. Commun. 2008; 38: 2753
    • 19b Takagi K, Sasaki K, Sakakibara Y. Bull. Chem. Soc. Jpn. 1991; 64: 1118
    • 19c Takagi K, Sakakibara Y. Chem. Lett. 1989; 1957
  • 20 Yu D.-G, Li B.-J, Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
  • 21 Jin F, Confalone PN. Tetrahedron Lett. 2000; 41: 3271
    • 22a Littke A, Soumeillant M, Kaltenbach RF. III, Cherney RJ, Tarby CM, Kiau S. Org. Lett. 2007; 9: 1711
    • 22b Cheng Y.-n, Duan Z, Li T, Wu Y. Synlett 2007; 543
  • 23 Xie X, Zhang TY, Zhang Z. J. Org. Chem. 2006; 71: 6522
    • 24a Old DW, Wolfe JP, Buchwald SL. J. Am. Chem. Soc. 1998; 120: 9722
    • 24b Bei X, Uno T, Norris J, Turner HW, Weinberg WH, Guram AS, Petersen JL. Organometallics 1999; 18: 1840
    • 24c Kwong FY, Chan AS. C. Synlett 2008; 1440
    • 25a To SC, Kwong FY. Chem. Commun. 2011; 47: 5079
    • 25b Ortiz D, Blug M, Le Goff X.-F, Le Floch P, Mézailles N, Maître P. Organometallics 2012; 31: 5975
  • 26 Albaneze-Walker J, Raju R, Vance JA, Goodman AJ, Reeder MR, Liao J, Maust MT, Irish PA, Espino P, Andrews DR. Org. Lett. 2009; 11: 1463
  • 27 General Procedures for the Cyanation of Aryl Chlorides and Mesylates An oven-dried Schlenk tube was evacuated and backfilled with nitrogen. The Schlenk tube was charged with Pd(OAc)2 (4.5 mg, 0.02 mmol ), L1 (36.5 mg, 0.08 mmol), PhB(OH)2 (6.1 mg, 0.05 mmol), and t-BuOH (2 mL), and the mixture was stirred for half hour at 50 °C. After cooling to r.t., aryl chloride or mesylates (1.00 mmol), K4[Fe(CN)6]·3H2O (211.2 mg, 0.50 mmol), K2CO3 (138.2 mg, 1.00 mmol), and H2O (2 mL) were added. The septum was replaced with an inside reflux condenser, and then the Schlenk tube was placed in an oil bath preheated to 100 °C (120 °C for aryl mesylates) with stirring for 6 h (24 h for aryl mesylates). Then the reaction mixture was allowed to cool to r.t., extracted with CH2Cl2, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel.4-(tert-Butyl)benzonitrile (2a) The crude material was purified by column chromatography on silica gel (eluting with PE–EtOAc, 20:1) to give the compound as yellow oil (127.4 mg, 80%). 1H NMR (400 MHz, CDCl3): δ = 7.61–7.57 (m, 2 H), 7.50–7.46 (m, 2 H), 1.33 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 156.4, 131.7, 126.0, 118.9, 109.1, 35.1, 30.8.