Fortschr Neurol Psychiatr 2015; 83(1): 9-17
DOI: 10.1055/s-0034-1385734
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Myotone Dystrophien: Klinik, Pathogenese, Diagnostik und Therapie

Myotonic Dystrophies: Clinical Presentation, Pathogenesis, Diagnostics and Therapy
J. Finsterer
1   Krankenanstalt Rudolfstiftung, Wien
,
S. Rudnik-Schöneborn
2   Institut für Humangenetik, Uniklinik RWTH Aachen
› Author Affiliations
Further Information

Publication History

09 April 2014

07 November 2014

Publication Date:
20 January 2015 (online)

Zusammenfassung

Die autosomal dominanten dystrophischen Myotonien dystrophia myotonica Typ-1 (DM1, Curschmann-Steinert-Erkrankung) und dystrophia myotonica Typ-2 (DM2, proximale myotone Myopathie (PROMM)), sind im Gegensatz zu den nicht-dystrophischen Myotonien progressive Multisystem-Erkrankungen. DM1 und DM2 gelten als die häufigsten Muskeldystrophien. Am stärksten ist bei beiden der Skelettmuskel betroffen (Parese, Atrophie, Myotonie, Myalgie). Zusätzlich manifestiert sich die Erkrankung am Auge, Herzmuskel, Hirn, endokrinen Drüsen, Gastrointestinaltrakt, Skelett, Haut bzw. Hautanhangsgebilden und peripheren Nerven. Bei der DM1 werden eine kongenitale, juvenile, klassische und eine spät manifestierende Form unterschieden. Die DM2 ist eine Erkrankung des mittleren und höheren Erwachsenenalters und verläuft in der Regel milder als die DM1. Ursache der DM1 ist eine CTG-Repeat-Expansion auf > 50 Repeats im 3‘ nicht-kodierenden Ende des DMPK-Gens. Ursache der DM2 ist eine CCTG-Repeat-Expansion auf 75 – 11 000 Repeats in Intron 1 des CNBP/ZNF9 Gens. Die mutierte prä-mRNA beider Gene akkumuliert im Kern, setzt RNA-bindende Proteine frei und führt zu einer veränderten Proteinexpression über alternatives Spleißen von nachgeordneten Genen (toxische RNA-Erkrankungen). Bei der DM1 kommt es zu einer Repeatvermehrung von Generation zu Generation. Die DM1 verläuft umso schwerer, je höher die Repeat-Anzahl (Antizipation) ist. Bei der DM2 korrelieren die Schwere der Symptome und das Alter bei Beginn nicht mit der Repeat-Anzahl.

Abstract

The autosomal-dominant myotonic dystrophies dystrophia myotonica type-1 (DM1, Curschmann-Steinert disease) and dystrophia myotonica type-2 (DM2, proximal myotonic myopathy (PROMM)), are, contrary to the non-dystrophic myotonias, progressive multisystem disorders. DM1 and DM2 are the most frequent of the muscular dystrophies. In both diseases the skeletal muscle is the most severely affected organ (weakness, wasting, myotonia, myalgia). Additionally, they manifest in the eye, heart, brain, endocrine glands, gastrointestinal tract, skin, skeleton, and peripheral nerves. Phenotypes of DM1 may be classified as congenital, juvenile, classical, or late onset. DM2 is a disorder of the middle or older age and usually has a milder course compared to DM1. DM1 is due to a CTG-repeat expansion > 50 repeats in the non-coding 3' UTR of the DMPK-gene. DM2 is caused by a CCTG-repeat expansion to 75 – 11 000 repeats in intron-1 of the CNBP/ZNF9 gene. Mutant pre-mRNAs of both genes aggregate within the nucleus (nuclear foci), which sequester RNA-binding proteins and result in an abnormal protein expression via alternative splicing in downstream effector genes (toxic RNA diseases). Other mechanisms seem to play an additional pathogenetic role. Clinical severity of DM1 increases from generation to generation (anticipation). The higher the repeat expansion the more severe the DM1 phenotype. In DM2 severity of symptoms and age at onset do not correlate with the expansion size. Contrary to DM2, there is a congenital form and anticipation in DM1.

 
  • Literatur

  • 1 Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 2012; 11: 891-905
  • 2 Peric S, Nisic T, Milicev M et al. Hypogonadism and erectile dysfunction in myotonic dystrophy type 1. Acta Myol 2013; 32: 106-109
  • 3 Rosa N, Lanza M, de Bernardo M et al. Intraocular pressure in patients with muscular dystrophies. Ophthalmology 2013; 120: 1306-1307
  • 4 Savić Pavićević D, Miladinović J, Brkušanin M et al. Molecular genetics and genetic testing in myotonic dystrophy type 1. Biomed Res Int 2013; 2013: 391821 DOI: 10.1155/2013/391821.
  • 5 Arsenault ME, Prevost C, Lescault A et al. Clinical characteristics of myotonic dystrophy type 1 patients with small CTG expansions. Neurology 2006; 66: 1248-1250
  • 6 Sun C, Van Ghelue M, Tranebjærg L et al. Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN1 mutation and expansion in the CNBP (ZNF9) gene. Clin Genet 2011; 80: 574-580
  • 7 Ahmadian JL, Heller SL, Nishida T et al. Myotonic dystrophy type 1 (DM1) presenting with laryngeal stridor and vocal fold paresis. Muscle Nerve 2002; 25: 616-618
  • 8 Panaite PA, Kuntzer T, Gourdon G et al. Functional and histopathological identification of the respiratory failure in a DMSXL transgenic mouse model of myotonic dystrophy. Dis Model Mech 2013; 6: 622-631
  • 9 Rakocevic Stojanovic V, Peric S, Paunic T et al. Cardiologic predictors of sudden death in patients with myotonic dystrophy type 1. J Clin Neurosci 2013; 20: 1002-1006
  • 10 Finsterer J, Stölberger C, Kopsa W. Noncompaction in myotonic dystrophy type 1 on cardiac MRI. Cardiology 2005; 103: 167-168
  • 11 Groh WJ, Groh MR, Saha C et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med 2008; 358: 2688-2697
  • 12 Ha AH, Tarnopolsky MA, Bergstra TG et al. Predictors of atrio-ventricular conduction disease, longterm outcomes in patients with myotonic dystrophy types I and II. Pacing Clin Electrophysiol 2012; 35: 1262-1269
  • 13 Rollnik JD, Heinz U, Lenz O. Myotonic dystrophy type 1 presenting with stroke-like episodes: a case report. BMC Res Notes 2013; 6: 243
  • 14 Rhodes JD, Lott MC, Russell SL et al. Activation of the innate immune response and interferon signalling in myotonic dystrophy type 1 and type 2 cataracts. Hum Mol Genet 2012; 21: 852-862
  • 15 Balatsouras DG, Felekis D, Panas M et al. Inner ear dysfunction in myotonic dystrophy type 1. Acta Neurol Scand 2013; 127: 337-343
  • 16 Caliandro P, Silvestri G, Padua L et al. fNIRS evaluation during a phonemic verbal task reveals prefrontal hypometabolism in patients affected by myotonic dystrophy type 1. Clin Neurophysiol 2013; 124: 2269-2276
  • 17 Caillet-Boudin ML, Fernandez-Gomez FJ, Tran H et al. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci 2014; 6: 57
  • 18 Serra L, Silvestri G, Petrucci A et al. Abnormal functional brain connectivity and personality traits in myotonic dystrophy type 1. JAMA Neurol 2014; 1: 603-611
  • 19 Laberge L, Gagnon C, Dauvilliers Y. Daytime sleepiness and myotonic dystrophy. Curr Neurol Neurosci Rep 2013; 13: 340
  • 20 Tanaka Y, Kato T, Nishida H et al. Is there a difference in gastric emptying between myotonic dystrophy type 1 patients with and without gastrointestinal symptoms?. J Neurol 2013; 260: 1611-1616
  • 21 Awater C, Zerres K, Rudnik-Schoneborn S. Pregnancy course and outcome in women with hereditary neuromuscular disorders: comparison of obstetric risks in 178 patients. Eur J Obstet Gynecol Reprod Biol 2012; 162: 153-159
  • 22 Peric S, Stojanovic VR, Nikolic A et al. Peripheral neuropathy in patients with myotonic dystrophy type 1. Neurol Res 2013; 35: 331-335
  • 23 Finsterer J, Fellinger J. Alopecia as a prominent feature of myotonic dystrophy type 1. Rev Invest Clin 2011; 63: 322-324
  • 24 Finsterer J, Stöllberger C, Mölzer G et al. Pneumosinus dilatans and hypercalcification of the falx and ligamentum petroclinoideum in myotonic dystrophy 1. Neurologist 2010; 16: 125-128
  • 25 Mohamed S, Pruna L, Kaminsky P. Increasing risk of tumors in myotonic dystrophy type 1. Presse Med 2013; 42: e281-e284
  • 26 Win AK, Perattur PG, Pulido JS et al. Increased cancer risks in myotonic dystrophy. Mayo Clin Proc 2012; 87: 130-135
  • 27 Gagnon C, Chouinard MC, Laberge L et al. Prevalence of lifestyle risk factors in myotonic dystrophy type 1. Can J Neurol Sci 2013; 40: 42-47
  • 28 Carroll JM, Quaid KA, Stone K et al. Two is better than one: a case of homozygous myotonic dystrophy type 1. Am J Med Genet A 2013; 161: 1763-1767
  • 29 Rudnik-Schöneborn S, Nicholson GA, Morgan G et al. Different pattern of obstetric complications in relation to the disease status of the fetus. Am J Med Genet 1998; 80: 314-321
  • 30 Jinnai K, Mitani M, Futamura N et al. Somatic instability of CTG repeats in the cerebellum of myotonic dystrophy type 1. Muscle Nerve 2013; 48: 105-108
  • 31 Jones K, Wei C, Iakova P et al. GSK3β mediates muscle pathology in myotonic dystrophy. J Clin Invest 2012; 122: 4461-4472
  • 32 Jahromi AH, Nguyen L, Fu Y et al. A novel CUG (exp)·MBNL1 inhibitor with therapeutic potential for myotonic dystrophy type 1. ACS Chem Biol 2013; 8: 1037-1043
  • 33 Childs-Disney JL, Stepniak-Konieczna E, Tran T et al. Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules. Nat Commun 2013; 4: 2044
  • 34 Leger AJ, Mosquea LM, Clayton NP et al. Systemic delivery of a peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy. Nucleic Acid Ther 2013; 23: 109-117
  • 35 Michalova E, Vojtesek B, Hrstka R. Impaired pre-mRNA processing and altered architecture of 3' untranslated regions contribute to the development of human disorders. Int J Mol Sci 2013; 14: 15681-15694
  • 36 Oana K, Oma Y, Suo S et al. Manumycin A corrects aberrant splicing of Clcn1 in myotonic dystrophy type 1 (DM1) mice. Sci Rep 2013; 3: 2142
  • 37 Huin V, Vasseur F, Schraen-Maschke S et al. MBNL1 gene variants as modifiers of disease severity in myotonic dystrophy type 1. J Neurol 2013; 260: 998-1003
  • 38 Kamsteeg EJ, Kress W, Catalli C et al. Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. Eur J Hum Genet 2012; 20: 1203-1208
  • 39 Kumar A, Agarwal S, Agarwal D et al. Myotonic dystrophy type 1 (DM1): a triplet repeat expansion disorder. Gene 2013; 522: 226-230
  • 40 Gagnon C, Chouinard MC, Laberge L et al. The DM1 Expert Panel. Health supervision and anticipatory guidance in adult myotonic dystrophy. Neurmuscular Disord 2010; 20: 847-851
  • 41 Nigro G, Russo V, Rago A et al. Right atrial preference pacing algorithm in the prevention of paroxysmal atrial fibrillation in myotonic dystrophy type 1 patients: a long term follow-up study. Acta Myol 2012; 31: 139-143
  • 42 Greco S, Perfetti A, Fasanaro P et al. Deregulated microRNAs in myotonic dystrophy type 2. PLoS One 2012; 7: e39732 DOI: 10.1371/journal.pone.0039732.
  • 43 Suominen T, Bachinski LL, Auvinen S et al. Population frequency of myotonic dystrophy: higher than expected frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. Eur J Hum Genet 2011; 19: 776-782
  • 44 Cardani R, Giagnacovo M, Botta A et al. Co-segregation of DM2 with a recessive CLCN1 mutation in juvenile onset of myotonic dystrophy type 2. J Neurol 2012; 259: 2090-2099
  • 45 Kruse B, Gal A. Talipes equinovarus as leading symptom of congenital myotonic dystrophy type 2. Muscle Nerve 2011; 43: 768
  • 46 Kimura T, Saito T. Myotonic dystrophy type 2. Brain Nerve 2011; 63: 1151-1160
  • 47 Johnson NE, Heatwole CR. Teaching video neuroimages: trapezius myotonia percussion sign in myotonic dystrophy type 2. Neurology 2013; 80: e251
  • 48 Suokas KI, Haanpää M, Kautiainen H et al. Pain in patients with myotonic dystrophy type 2: a postal survey in Finland. Muscle Nerve 2012; 45: 70-74
  • 49 Axford MM, Pearson CE. Illuminating CNS and cognitive issues in myotonic dystrophy: Workshop report. Neuromuscul Disord 2013; 23: 370-374
  • 50 Lam EM, Shepard PW, St Louis EK et al. Restless legs syndrome and daytime sleepiness are prominent in myotonic dystrophy type 2. Neurology 2013; 81: 157-164
  • 51 Shepard P, Lam EM, St Louis EK et al. Sleep disturbances in myotonic dystrophy type 2. Eur Neurol 2012; 68: 377-380
  • 52 Romigi A, Albanese M, Placidi F et al. Sleep disorders in myotonic dystrophy type 2: a controlled polysomnographic study and self-reported questionnaires. Eur J Neurol 2014; 21: 929-934
  • 53 Chokroverty S, Bhat S, Rosen D et al. REM behavior disorder in myotonic dystrophy type 2. Neurology 2012; 78: 2004
  • 54 Ulane CM, Teed S, Sampson J. Recent advances in myotonic dystrophy type 2. Curr Neurol Neurosci Rep 2014; 14: 429
  • 55 Lee TM, Maurer MS, Karbassi I et al. Severe dilated cardiomyopathy in a patient with myotonic dystrophy type 2 and homozygous repeat expansion in ZNF9. Congest Heart Fail 2012; 18: 183-186
  • 56 Hermans MC, Faber CG, Bekkers SC et al. Structural and functional cardiac changes in myotonic dystrophy type 1: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2012; 14: 48
  • 57 Spengos K, Gialafos E, Vassilopoulou S et al. Delayed contrast enhancement on cardiac MRI unmasks subclinical cardiomyopathy in a case of myotonic dystrophy type 2. Hellenic J Cardiol 2012; 53: 324-326
  • 58 Sansone VA, Brigonzi E, Schoser B et al. The frequency and severity of cardiac involvement in myotonic dystrophy type 2 (DM2): Long-term outcomes. Int J Cardiol 2013; 168: 1147-1153
  • 59 Passeri E, Bugiardini E, Sansone VA et al. Vitamin D, parathyroid hormone and muscle impairment in myotonic dystrophies. J Neurol Sci 2013; 331: 132-135
  • 60 Gadalla SM, Pfeiffer RM, Kristinsson SY et al. Quantifying cancer absolute risk and cancer mortality in the presence of competing events after a myotonic dystrophy diagnosis. PLoS One. 2013; 8: e79851 DOI: 10.1371/journal.pone.0079851..
  • 61 Radvanszky J, Surovy M, Polak E et al. Uninterrupted CCTG tracts in the myotonic dystrophy type 2 associated locus. Neuromuscul Disord 2013; 23: 591-598
  • 62 Day JW, Ricker K, Jacobsen JF et al. Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 2003; 60: 657-664
  • 63 Ursu SF, Alekov A, Mao NH et al. ClC1 chloride channel in myotonic dystrophy type 2 and ClC1 splicing in vitro. Acta Myol 2012; 31: 144-153
  • 64 Lukáš Z, Falk M, Feit J et al. Sequestration of MBNL1 in tissues of patients with myotonic dystrophy type 2. Neuromuscul Disord 2012; 22: 604-616
  • 65 Giagnacovo M, Malatesta M, Cardani R et al. Nuclear ribonucleoprotein-containing foci increase in size in non-dividing cells from patients with myotonic dystrophy type 2. Histochem Cell Biol 2012; 138: 699-707
  • 66 Malatesta M, Giagnacovo M, Renna LV et al. Cultured myoblasts from patients affected by myotonic dystrophy type 2 exhibit senescence-related features: ultrastructural evidence. Eur J Histochem 2011; 55: e26
  • 67 Faenza I, Blalock W, Bavelloni A et al. A role for PLCbeta1 in myotonic dystrophies type 1 and 2. FASEB J 2012; 26: 3042-3048
  • 68 Calcaterra NB, Armas P, Weiner AM et al. CNBP: a multifunctional nucleic acid chaperone involved in cell death and proliferation control. IUBMB Life 2010; 62: 707-714
  • 69 Sammons MA, Samir P, Link AJ. Saccharomyces cerevisiae Gis2 interacts with the translation machinery and is orthogonal to myotonic dystrophy type 2 protein ZNF9. Biochem Biophys Res Commun 2011; 406: 13-19
  • 70 Huichalaf C, Schoser B, Schneider-Gold C et al. Reduction of the rate of protein translation in patients with myotonic dystrophy 2. J Neurosci 2009; 29: 9042-9049
  • 71 Raheem O, Olufemi SE, Bachinski LL et al. Mutant (CCTG)n expansion causes abnormal expression of zinc finger protein 9 (ZNF9) in myotonic dystrophy type 2. Am J Pathol 2010; 177: 3025-3036
  • 72 Hilbert JE, Ashizawa T, Day JW et al. Diagnostic odyssey of patients with myotonic dystrophy. J Neurol 2013; 260: 2497-2504
  • 73 Heatwole C, Johnson N, Goldberg B et al. Laboratory abnormalities in patients with myotonic dystrophy type 2. Arch Neurol 2011; 68: 1180-1184
  • 74 Tieleman AA, Vinke A, van Alfen N et al. Skeletal muscle involvement in myotonic dystrophy type 2. A comparative muscle ultrasound study. Neuromuscul Disord 2012; 22: 492-499
  • 75 Stramare R, Beltrame V, Dal Borgo R et al. MRI in the assessment of muscular pathology: a comparison between limb-girdle muscular dystrophies, hyaline body myopathies and myotonic dystrophies. Radiol Med 2010; 115: 585-599
  • 76 Dabby R, Sadeh M, Herman O et al. Clinical, electrophysiologic and pathologic findings in 10 patients with myotonic dystrophy 2. Isr Med Assoc J 2011; 13: 745-747
  • 77 Nadaj-Pakleza A, Lusakowska A, Sułek-Piątkowska A et al. Muscle pathology in myotonic dystrophy: light and electron microscopic investigation in eighteen patients. Folia Morphol (Warsz) 2011; 70: 121-129
  • 78 Schoser B, Grimm T. Myotone Dystrophien – und ihre Differenzialdiagnosen. Medgen 2009; 21: 381-392
  • 79 Udd B, Meola G, Krahe R et al. Myotonic dystrophy type 2 (DM2) and related disorders. Report of the 180th ENMC workshop including guidelines on diagnostics and management. Neuromuscul Disord 2011; 21: 443-450
  • 80 Wong CH, Fu Y, Ramisetty SR et al. Selective inhibition of MBNL1-CCUG interaction by small molecules toward potential therapeutic agents for myotonic dystrophy type 2 (DM2). Nucleic Acids Res 2011; 39: 8881-8890