Synlett 2017; 28(15): 2004-2007
DOI: 10.1055/s-0036-1588866
letter
© Georg Thieme Verlag Stuttgart · New York

Base-Catalyzed Transcarbamoylation

Benoît Rhoné
a   Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, 11 Rue Pierre et Marie Curie, 75005 Paris, France   Email: vincent.semetey@chimie-paristech.fr
b   Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, 75005 Paris, France
c   Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
,
Vincent Semetey*
a   Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, 11 Rue Pierre et Marie Curie, 75005 Paris, France   Email: vincent.semetey@chimie-paristech.fr
b   Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, 75005 Paris, France
› Author Affiliations
Further Information

Publication History

Received: 09 March 2017

Accepted after revision: 12 May 2017

Publication Date:
07 June 2017 (online)


Abstract

Inorganic bases such as NaH, KOt-Bu, NaOH, or KOH are efficient catalysts to promote the transcarbamoylation reaction between urethanes and a variety of primary and secondary alcohols under mild conditions. They constitute an alternative to organometallic catalysis and can be applied to aliphatic or aromatic urethanes.

Supporting Information

 
  • References and Notes

  • 1 Delebecq E. Pascault J.-P. Boutevin B. Ganachaud F. Chem. Rev. 2013; 113: 80
  • 2 Limal D. Semetey V. Dalbon P. Jolivet M. Briand J.-P. Tetrahedron Lett. 1999; 40: 2749
  • 3 Guichard G. Semetey V. Didierjean C. Aubry A. Briand J.-P. Rodriguez M. J. Org. Chem. 1999; 64: 8702
  • 4 Reuzel PG. J. Kuper CF. Feron VJ. Appelman LM. Löser E. Fundam. Appl. Toxicol. 1994; 22: 186
  • 5 Kreye O. Mutlu H. Meier MA. R. Green Chem. 2013; 15: 1431
  • 6 Hahn C. Keul H. Möller M. Polym. Int. 2012; 61: 1048
  • 7 Neffgen S. Keul H. Höcker H. Macromolecules 1997; 30: 1289
  • 8 Deepa P. Jayakannan MJ. Polym. Sci., Part A: Polym. Chem. 2008; 46: 2445
  • 9 Rokicki G. Piotrowska A. Polymer 2002; 43: 2927
  • 10 Duval C. Kébir N. Charvet A. Martin A. Burel F. J. Polym. Sci., Part A: Polym. Chem. 2015; 53: 1351
  • 11 Isaksson R. Kumpiņa I. Larhed M. Wannberg J. Tetrahedron Lett. 2016; 57: 1476
  • 12 Chaturvedi D. Tetrahedron 2012; 68: 15
  • 13 Shapiro G. Marzi M. J. Org. Chem. 1997; 62: 7096
  • 14 Jousseaume B. Laporte C. Toupance T. Bernard JM. Tetrahedron Lett. 2003; 44: 5983
  • 15 Jousseaume B. Laporte C. Toupance T. Bernard JM. Tetrahedron Lett. 2002; 43: 6305
  • 16 Dumrul H. Yuksel F. Polyhedron 2013; 63: 83
  • 17 Hatano M. Kamiya S. Moriyama K. Ishihara K. Org. Lett. 2011; 13: 430
  • 18 Hatano M. Ishihara K. Chem. Commun. 2013; 49: 1983
  • 19 Schuchardt U. Sercheli R. Vargas RM. J. Braz. Chem. Soc. 1998; 9: 199
  • 20 Freedman B. Butterfield RO. Pryde EH. J. Am. Oil Chem. Soc. 1986; 63: 1375
  • 21 Schunk S. Enders D. Org. Lett. 2001; 3: 3177
  • 22 Millet R. Träff AM. Petrus ML. Bäckvall J.-E. J. Am. Chem. Soc. 2010; 132: 15182
  • 23 Barber CG. Blakemore DC. Chiva J.-Y. Eastwood RL. Middleton DS. Paradowski KA. Bioorg. Med. Chem. Lett. 2009; 19: 1499
  • 24 Bernáth G. Stájer G. Szabó AE. Fölöp F. Sohár P. Tetrahedron 1985; 41: 1353
  • 25 Tundo P. McElroy C. Aricò F. Synlett 2010; 1567
  • 26 General Procedure for Transcarbamoylation In a 25 mL round-bottom flask, the urethane (0.66 mmol) was dissolved in dry toluene (2 mL). The alcohol (3 equiv, 1.98 mmol) and the base (1.2 equiv, 0.79 mmol) were added, and the reaction mixture was heated at 60 °C with continuous agitation. Samples were taken at regular time intervals and analyzed by HPLC and 1H NMR spectroscopy to estimate conversion. To isolate the pure product, water (10 mL) and EtOAc (10 mL) were added to the reaction mixture. The organic layer was separated, dried over MgSO4, filtered, and the solvent was evaporated. The residue was purified by silica column chromatography eluting with a 10–50% EtOAc–cyclohexane gradient. The fractions were concentrated under reduced pressure to give the desired product. Butyl N-Phenylcarbamate White solid (115 mg, 90% yield). HPLC: t R = 16.1 min (linear gradient, 0–60% B, 20 min). 1H NMR (300 MHz, DMSO-d 6): δ = 9.57 (s, 1 H), 7.43 (d, J = 7.5 Hz, 2 H), 7.24 (t, J = 7.5 Hz, 2 H), 6.95 (t, = 6 Hz, 1 H), 4.05 (t, J = 6.8 Hz, 2 H), 1.46–1.72 (m, 2 H), 1.23–1.46 (m, 2 H), 0.89 (t, J = 7.3 Hz, 3 H) ppm. Octyl N-Phenylcarbamate White solid (135 mg, 82% yield). HPLC: t R = 18.9 min (linear gradient, 0–60% B, 20 min). 1H NMR (300 MHz, CDCl3): δ = 7.38 (d, J = 7.5 Hz, 2 H), 7.31 (t, J = 7.5 Hz, 2 H), 7.06 (t, J = 7.5 Hz, 1 H), 7.06 (br s, 1 H), 4.16 (t, J = 6.8 Hz, 2 H), 1.59–1.76 (m, 2 H), 1.12–1.45 (m, 10 H), 0.79–0.89 (m, 3 H) ppm. 2-Methoxyethyl N-Phenylcarbamate White solid (120 mg, 93% yield). HPLC: t R = 14.5 min (linear gradient, 0–60% B, 20 min).1H NMR (300 MHz, CDCl3): δ = 7.22–7.49 (m, 4 H), 6.99–7.12 (m, 1 H), 6.64–6.83 (m, 1 H), 4.33 (t, J = 4.5 Hz, 2 H), 3.65 (t, J = 4.5 Hz, 2 H), 3.42 (s, 3 H).