Synlett 2017; 28(19): 2629-2632
DOI: 10.1055/s-0036-1590862
letter
© Georg Thieme Verlag Stuttgart · New York

A Synthesis of Functionalized Thiazoles and Pyrimidine-4(3H)-thiones from 1,1,3,3-Tetramethylguanidine, Acetylenic Esters, and Aryl Isothiocyanates

Issa Yavari*
a   Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran   Email: yavarisa@modares.ac.ir
,
Asiyeh Amirahmadi
a   Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran   Email: yavarisa@modares.ac.ir
,
Mohammad Reza Halvagar
b   Department of Inorganic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, PO Box 14335-186, Tehran, Iran
› Author Affiliations
Further Information

Publication History

Received: 06 May 2017

Accepted after revision: 11 July 2017

Publication Date:
25 August 2017 (online)


Abstract

Aryl isothiocyanates react with dialkyl 2-{[bis(dimethylamino)methylene]amino}maleates, generated from 1,1,3,3-tetramethylguanidine and acetylenic esters, to afford 2-(dimethylamino)-1,3-thiazole derivatives, functionalized 2-(dimethylamino)-6-thioxo-1,6-dihydropyrimidines, and ethyl 2-(dimethylamino)-6-[(4-nitrophenyl)im­ino]-4-phenyl-6H-1,3-thiazine-5-carboxylate, in moderate to good yields.

Supporting Information

 
  • References and Notes

    • 1a Joule JA. Mills K. Heterocyclic Chemistry . Wiley; Chichester: 2010. 5th ed.
    • 1b Dhongade HJ. Dansena H. Chandrakar KK. Asian J. Pharm. Clin. Res. 2015; 8 (04) 171
    • 1c Lagoja IM. Chem. Biodiversity 2005; 2: 1
  • 2 Cosimelli B. Greco G. Ehlardo M. Novellino E. Da Settimo F. Taliani S. La Motta C. Bellandi M. Tuccinardi T. Martinelli A. Ciampi O. Trincavelli ML. Martini C. J. Med. Chem. 2008; 51: 1764
  • 3 Metzger JV. In Comprehensive Heterocyclic Chemistry . Vol. 6, Chap. 4.19. Katritzky AR. Rees CW. Pergamon; Oxford: 1984: 235
  • 4 Desai NC. Joshi VV. Rajpara KM. Vaghani HV. Satodiya HM. J. Fluorine Chem. 2012; 142: 67
  • 5 Brzezińska E. Kośka G. Biomed. Chromatogr. 2006; 20: 1004
  • 6 Barradas JS. Errea MI. D’Accorso NB. Sepúlveda CS. Damonte EB. Eur. J. Med. Chem. 2011; 46: 259
  • 7 Mishra CB. Kumari S. Tiwari M. Eur. J. Med. Chem. 2015; 92: 1
    • 8a Souldozi A. Ramazani A. Dadrass AR. Ślepokura K. Lis T. Helv. Chim. Acta 2012; 95: 339
    • 8b Nefzi A. Arutyunyan S. Fenwick JE. J. Org. Chem. 2010; 75: 7939
  • 9 Zheng H. Mei Y.-H. Du K. Cao X.-T. Zhang P.-F. Molecules 2013; 18: 13425
  • 10 Compounds 5, 6 and 14: General Procedure TMG (1; 0.115 g, 1 mmol) and the appropriate acetylenic ester 2 (1 mmol) were dissolved in MeCN (5 mL), and the solution was stirred for 1 h at r.t. Aryl isothiocyanate 3 (1 mmol) was added, and the mixture was stirred at the reflux until the reaction was complete [~48 h; TLC (EtOAc–hexane, 1:4)]. The mixture was then filtered and the precipitate was purified by flash column chromatography [silica gel, EtOAc–hexane (1:4)].
  • 11 Ethyl 2-(Dimethylamino)-4-phenylthiazole-5-carboxylate (5e) Yellow crystals; yield: 0.17 g (61%); mp 111–113 °C, (Lit.12 115–116 °C). IR (KBr): 3382, 2975, 1697, 1566 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.25 (t, J = 7.1 Hz, 3 H), 3.15 (s, 6 H), 4.20 (q, J = 7.1 Hz, 2 H), 7.37–7.39 (m, 3 H), 7.76 (d, J = 7.7 Hz, 2 H). 13C NMR (125.7 MHz, CDCl3): δ = 14.2 (Me), 40.2 (Me2N), 60.6 (CH2O), 110.4 (C), 114.2 (C), 127.6 (2 CH), 128.9 (CH), 129.9 (2 CH), 134.6 (C), 161.9 (C=O), 170.7 (C). EI-MS: m/z (%) = 276/09 (M+, 100), 231 (47), 175 (50), 133 (47), 89 (65), 44 (19). Anal. Calcd for C14H16N2O2S (276.35): C, 60.85; H, 5.84; N, 10.14. Found: C, 61.13; H, 5.88; N, 10.17. Ethyl 2-(Dimethylamino)-1-(4-methoxyphenyl)-4-phenyl-6-thioxo-1,6-dihydropyrimidine-5-carboxylate (6c) Yellow solid; yield: 0.14 g (34%); mp 116–118 °C. IR (KBr): 3438, 2929, 1685, 1617 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.25 (t, J = 7.1 Hz, 3 H), 2.85 (s, 6 H), 3.94 (s, 3 H), 4.33 (q, J = 7.1 Hz, 2 H), 7.09 (d, J = 7.9 Hz, 2 H), 7.36 (d, J = 7.9 Hz, 2 H), 7.47–7.56 (m, 3 H), 8.89 (d, J = 6.7 Hz, 2 H). 13C NMR (125.7 MHz, CDCl3): δ = 13.9 (Me), 41.6 (Me2N), 55.6 (MeO), 61.8 (CH2O), 114.4 (2 CH), 124.7 (C), 128.4 (2 CH), 128.5 (2 CH), 130.4 (CH), 130.7 (2 CH), 132.9 (C), 137.4 (C), 154.6 (C), 157.5 (C), 159.6 (C), 167.4 (C=O), 185.7 (C=S). EI-MS: m/z (%) = 409.15 (M+, 100), 365 (15), 258 (22), 229 (30), 147 (28), 77 (23). Anal. Calcd for C22H23N3O3S (409.50): C, 64.53; H, 5.66; N, 10.26. Found: C, 64.84; H, 5.69; N, 10.29. Ethyl (6Z)-2-(Dimethylamino)-6-[(4-nitrophenyl)imino]-4-phenyl-6H-1,3-thiazine-5-carboxylate (14) Yellow solid; yield: 0.31 g (73%); mp 196–198 °C. IR (KBr): 3440 and 2930 (Me), 1721 (CO2), 1579 (C=N) cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.07 (t, J = 7.1 Hz, 3 H), 3.25 (s, 6 H), 4.17 (q, J = 6.9 Hz, 2 H), 7.12 (d, J = 8.9 Hz, 2 H), 7.49–7.50 (m, 3 H), 7.75 (d, J = 7.4 Hz, 2 H), 8.32 (d, J = 8.9 Hz, 2 H). 13C NMR (125.7 MHz, CDCl3): δ = 13.8 (Me), 38.8 (Me2N), 61.6 (CH2O), 108.5 (C), 121.1 (2 CH), 125.6 (2 CH), 128.2 (2 CH), 128.3 (2 CH), 129.7 (CH), 140.2 (C), 144.3 (C), 153.1 (C), 156.1 (C), 158.3 (C), 158.9 (C), 168.1 (C=O). EI-MS: m/z (%) = 424.12 (M+, 100), 380 (14), 322 (34), 258 (21), 229 (31), 77 (23). Anal. Calcd for C21H20N4O4S (424.48): C, 59.42; H, 4.75; N, 13.20. Found: C, 59.73; H, 4.78; N, 13.23.
  • 12 Kaye PT. Meakins GD. Smith AK. Tirel MD. J. Chem. Soc., Perkin Trans. 1 1983; 1677
  • 13 X-ray diffraction measurements were carried out on a STOE IPDS 2T diffractometer with graphite-monochromated Mo-Kα radiation. All single crystals were obtained from CH2Cl2–hexane solutions and mounted on glass fibers. Cell constants and orientation matrices for data collection were obtained by least-square refinement of the diffraction data from 5045, 3838, and 3762 reflections for compounds 5e, 6c, and 14, respectively. Diffraction data were collected in a series of ω scans in 1° oscillations, and integrated by using the STOE X-AREA software package (see Ref. 15). Multiscan absorption corrections were applied by using WinGX-2013.3 software. The structures were solved by direct methods and subsequent difference Fourier maps, and then refined on F2 by a full-matrix least-squares procedure using anisotropic displacement parameters. Atomic factors are from the International Tables for X-ray Crystallography. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. All refinements were performed by using the X-STEP32, SHELXL-2014, and WinGX-2013.3 programs (see ref. 16).
  • 14 CCDC 1546425, 1530696, and 1530695 contain the supplementary crystallographic data for compounds 5e, 6c, and 14, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.uk/data_request/cif.
  • 15 X-AREA: Program for the Acquisition and Analysis of Data, Version 1.30. STOE & Cie GmbH; Darmstadt: 2005

    • For details, see:
    • 16a Farrugia LJ. J. Appl. Crystallogr. 1999; 32: 837
    • 16b Allen FH. Johnson O. Shields GP. Smith BR. Towler M. J. Appl. Crystallogr. 2004; 37: 335
    • 16c Edgington PR. McCabe P. Macrae CF. Pidcock E. Shields GP. Taylor R. Towler M. van der Streek J. J. Appl. Crystallogr. 2006; 39: 453
    • 16d Burnett MN. Johnson CK. ORTEP-III Report ORNL-6895 . Oak Ridge National Laboratory; Oak Ridge: 1996
    • 16e Spek AL. J. Appl. Crystallogr. 2003; 36: 7
    • 16f Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112
    • 16g Coppens P. Leiserowitz L. Rabinovich D. Acta Crystallogr. 1965; 18: 1035