Synlett, Table of Contents Synlett 2018; 29(12): 1627-1633DOI: 10.1055/s-0037-1609967 letter © Georg Thieme Verlag Stuttgart · New YorkZnO-Nanoparticles-Catalyzed Synthesis of Poly(tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)-ones) as Novel Multi-armed Molecules Hadeer M. Diab Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt Email: ismail_shafy@yahoo.com Email: aelwahy@hotmail.com , Ismail A. Abdelhamid* Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt Email: ismail_shafy@yahoo.com Email: aelwahy@hotmail.com , Ahmed H. M. Elwahy* Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt Email: ismail_shafy@yahoo.com Email: aelwahy@hotmail.com› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Dedicated to Professor Klaus Hafner on the occasion of his 90th birthday Abstract A new series of poly(tetrahydrobenzimidazo[2,1-b]-quinazolin-1(2H)-ones) was synthesized in good yields using a multicomponent reaction of poly(aldehydes), dimedone, and 2-aminobenzimidazole in DMF under conventional heating as well as under microwave irradiation. Key words Key wordspoly(aldehydes) - 2-aminobenzimidazole - cyclocondensation - Michael addition - poly(alkylation) - poly(tetrahydrobenzimidazoquinazolinone) Full Text References References and Notes 1 Sinkkonen J. Ovcharenko V. Zelenin KN. Bezhan IP. Chakchir BA. Al-assar F. Pihlaja K. Eur. J. Org. Chem. 2002; 2046 2 Alagarsamy V. Pathak US. Bioorg. Med. Chem. 2007; 15: 3457 3 Alagarsamy V. Revathi R. Meena S. Ramaseshu KV. Rajasekaran S. De Clerco E. Indian J. Pharm. Sci. 2004; 66: 459 4 Mohammadi Ziarani G. Badiei A. Aslani Z. Lashgari N. Arab. J. Chem. 2015; 8: 54 5 Chen LH. Chung TW. Narhe BD. Sun CM. ACS Comb. Sci. 2016; 18: 162 6 Reddy MR. Reddy GC. S. Jeong YT. RSC Adv. 2015; 11423 7 Kulkarni A. Török B. Green Chem. 2010; 12: 875 8 Cioc RC. Ruijter E. Orru RV. A. Green Chem. 2014; 16: 2958 9 Hügel HM. Molecules 2009; 14: 4936 10 Dallinger D. Kappe CO. Chem. Rev. 2007; 107: 2563 11 Kappe CO. Angew. Chem. Int. Ed. 2004; 43: 6250 12 Kappe CO. Chem. Soc. Rev. 2008; 37: 1127 13 Polshettiwar V. Varma RS. Acc. Chem. Res. 2008; 41: 629 14 Polshettiwar V. Varma RS. Chem. Soc. Rev. 2008; 37: 1546 15 Gawande MB. Shelke SN. Zboril R. Varma RS. Acc. Chem. Res. 2014; 47: 1338 16 Menger FM. In Biomimetic and Bioorganic Chemistry III . Springer; Berlin, Heidelberg: 1986: 1-15 17 Hadjichristidis N. Pitsikalis M. Iatrou H. Driva P. Sakellariou G. Chatzichristidi M. In Polymer Science: A Comprehensive Reference . Elsevier; ???: 2012: 29-111 18 Muraoka H. Mori M. Ogawa S. Phosphorus, Sulfur Silicon Relat. Elem. 2015; 190: 1382 19 Cremer J. Briehn CA. Chem. Mater. 2007; 19: 4155 20 Cheng X. Zhao J. Cui C. Fu Y. Zhang X. J. Electroanal. Chem. 2012; 677: 24 21 Olate FA. Parra ML. Vergara JM. Barberá J. Dahrouch M. Liq. Cryst. 2017; 44: 1173 22 Pathak SK. Nath S. De J. Pal SK. Achalkumar AS. New J. Chem. 2017; 41: 4680 23 Kanibolotsky AL. Perepichka IF. Skabara PJ. Chem. Soc. Rev. 2010; 39: 2695 24 Pathak SK. Pradhan B. Gupta RK. Gupta M. Pal SK. Achalkumar AS. J. Mater. Chem. C 2016; 4: 6546 25 Achalkumar AS. Hiremath US. Rao DS. S. Prasad SK. Yelamaggad CV. J. Org. Chem. 2013; 78: 527 26 Westphal E. Prehm M. Bechtold IH. Tschierske C. Gallardo H. J. Mater. Chem. C 2013; 1: 8011 27 Stackhouse PJ. Wilson A. Lacey D. Hird M. Liq. Cryst. 2010; 37: 1191 28 Astruc D. Boisselier E. Ornelas C. Chem. Rev. 2010; 110: 1857 29 Rajakumar P. Raja S. Tetrahedron Lett. 2008; 49: 6539 30 Reger DL. Semeniuc RF. Smith MD. Inorg. Chem. 2003; 42: 8137 31 Zhang W. Jin Y. Dynamic Covalent Chemistry: Principles, Reactions, and Applications. John Wiley and Sons; New York City, USA: 2017 32 Grillaud M. Bianco A. J. Pept. Sci. 2015; 21: 330 33 Roquet S. Cravino A. Leriche P. Alvque O. Frre P. Roncali J. Ale O. Fre P. J. Am. Chem. Soc. 2006; 128: 3459 34 He C. He Q. Yi Y. Wu G. Bai F. Shuai Z. Li Y. J. Mater. Chem. 2008; 18: 4085 35 He C. He Q. Yang X. Wu G. Yang C. Bai F. Shuai Z. Wang L. Li Y. J. Phys. Chem. C 2007; 111: 8661 36 He C. He Q. Wu G. Bai F. Li Y. Proc. SPIE 2007; 6656: 66560Z 37 Wu G. Zhao G. He C. Zhang J. He Q. Chen X. Li Y. Sol. Energy Mater. Sol. Cells 2009; 93: 108 38 He C. He Q. He Y. Li Y. Bai F. Yang C. Ding Y. Wang L. Ye J. Sol. Energy Mater. Sol. Cells 2006; 90: 1815 39 Roncali J. Leriche P. Cravino A. Adv. Mater. 2007; 19: 2045 40 Jean R. Acc. Chem. Res. 2009; 42: 1719 41 Dang D. Zhou P. Xiao M. Yang R. Zhu W. Dye Pigm. 2016; 133: 1 42 Liu J. Wu Y. Qin C. Yang X. Yasuda T. Islam A. Zhang K. Peng W. Chen W. Han L. Energy Environ. Sci. 2014; 7: 2963 43 Ameen S. Rub MA. Kosa SA. Alamry KA. Akhtar MS. Shin HS. Seo HK. Asiri AM. Nazeeruddin MK. ChemSusChem 2016; 9: 10 44 Calió L. Kazim S. Grätzel M. Ahmad S. Angew. Chem. Int. Ed. 2016; 55: 14522 45 Wang D. Astruc D. Chem. Rev. 2014; 114: 6949 46 Baeza A. Guillena G. Ramón DJ. ChemCatChem 2016; 8: 49 47 Shylesh S. Schünemann V. Thiel WR. Angew. Chem. Int. Ed. 2010; 49: 3428 48 Elwahy AH. M. Shaaban MR. Heterocycles 2017; 94: 595 49 Elwahy AH. M. Shaaban MR. RSC Adv. 2015; 5: 75659 50 Banerjee S. Saha A. New J. Chem. 2013; 37: 4170 51 Rao G. Kaushik M. Halve A. Tetrahedron Lett. 2012; 53: 2741 52 Bhattacharyya P. Pradhan K. Paul S. Das A. Tetrahedron Lett. 2012; 53: 4687 53 El-Fatah NA. A. Darweesh AF. Mohamed AA. Abdelhamid IA. Elwahy AH. M. Monatsh. Chem. 2017; 148: 2107 54 Abdella AM. Moatasim Y. Ali MA. Elwahy AH. M. Abdelhamid IA. J. Heterocycl. Chem. 2017; 54: 1854 55 Abdelmoniem AM. Ghozlan SA. S. Butenschön H. Abdelhamid IA. J. Heterocycl. Chem. 2017; 54: 473 56 Abdelmoniem AM. Salaheldin TA. Abdelhamid IA. Elwahy AH. M. J. Heterocycl. Chem. 2017; 54: 2670 57 Al-Awadi NA. Ibrahim MR. Abdelhamid IA. Elnagdi MH. Tetrahedron 2008; 64: 8202 58 Salama SK. Darweesh AF. Abdelhamid IA. Elwahy AH. M. J. Heterocycl. Chem. 2017; 54: 305 59 Sanad SM. H. Kassab RM. Abdelhamid IA. Elwahy AH. M. Heterocycles 2016; 92: 910 60 Elwahy AH. M. Shaaban MR. Curr. Org. Synth. 2015; 10: 425 61 Shaaban MR. Elwahy AH. M. Curr. Org. Synth. 2015; 11: 471 62 Abdella AM. Elwahy AH. M. Abdelhamid IA. Curr. Org. Synth. 2016; 13: 601 63 Shaaban MR. Elwahy AH. M. J. Heterocycl. Chem. 2012; 49: 640 64 Elwahy AH. M. Tetrahedron Lett. 2001; 42: 5123 65 Abdelhamid IA. Darweesh AF. Elwahy AH. M. Tetrahedron Lett. 2015; 56: 7085 66 Salem ME. Darweesh AF. Farag AM. Elwahy AH. M. J. Heterocycl. Chem. 2017; 54: 586 67 Abd El-Fatah NA. Darweesh AF. Mohamed AA. Abdelhamid IA. Elwahy AH. M. Tetrahedron 2017; 73: 1436 68 Salem ME. Darweesh AF. Farag AM. Elwahy AH. M. Tetrahedron 2016; 72: 712 69 Elwahy AH. M. Sarhan RM. Badawy MA. Curr. Org. Synth. 2013; 10: 786 70 Mohamed MF. Darweesh AF. Elwahy AH. M. Abdelhamid IA. RSC Adv. 2016; 6: 40900 71 Goli-Jolodar O. Shirini F. J. Iran. Chem. Soc. 2016; 13: 1077 72 Puligoundla RG. Karnakanti S. Bantu R. Nagaiah K. Kondra SB. Nagarapu L. Tetrahedron Lett. 2013; 54: 2480 73 Krishnamurthy G. Jagannath KV. J. Chem. Sci. 2013; 125: 807 74 Maleki A. Aghaei M. Ghamari N. Chem. Lett. 2015; 44: 259 75 Mousavi MR. Maghsoodlou MT. J. Iran. Chem. Soc. 2015; 12: 743 76 Amoozadeh A. Rahmani S. J. Mol. Catal. A: Chem. 2015; 396: 96 77 Insuasty B. Salcedo A. Quiroga J. Abonia R. Nogueras M. Cobo J. Salido S. Heterocycl. Commun. 2004; 10: 399 78 Hemmati B. Javanshir S. Dolatkhah Z. RSC Adv. 2016; 6: 50431 79 Compound 7 was obtained by heating a mixture of 4-formylbenzoic acid (11, 1 mmol), dimedone (2, 1 mmol), and aminobenzimidazole (3, 1 mmol) in DMF (10 mL) at reflux for 1 h. The crude solid was isolated and recrystallized from DMF as colorless crystals (82%); mp > 300 °C. 1H NMR (300 MHz, DMSO-d6 ): δ = 0.91 (s, 3 H, CH3), 1.06 (s, 3 H, CH3), 2.02–2.23 (m, 2 H, CH2), 2.61–2.67 (m, 2 H, CH2), 6.49 (s, 1 H, H12), 6.95–7.95 (m, 8 H, Ar-H), 11.60–12-81 (br, 2 H, NH, COOH). MS (EI): m/z = 387 [M]+. Anal. Calcd for C23H21N3O3: C, 71.30; H, 5.46; N, 10.85. Found: C, 71.43; H, 5.38; N, 10.63. 80 Typical Experimental Procedure for the Synthesis of Poly(aldehydes) 13, 15, 17 and 23 To a stirred solution of 4-formylbenzoic acid (11) in ethanol (10 mL), KOH (3, 4, or 6 mmol) was added. The reaction mixture was stirred at room temperature for 10 min. The solvent was then removed in vacuo, and the remaining solid was triturated with dry diethyl ether, collected, and dried to give the corresponding potassium salts. A solution of the latter salts (3, 4, or 6 mmol) and the corresponding poly(bromo) compounds (1 mmol) in DMF (20 mL) was heated under reflux for 5 min during which time KBr was precipitated. The solvent was then removed in vacuo, and the remaining material was washed with water (50 mL) and crystallized from the proper solvents to give the corresponding poly(aldehydes). Compound 13: colorless crystals (butanol, 76%); mp >300 °C. IR (KBr): ν = 1714 (br, 2 CO) cm–1. 1H NMR (DMSO-d 6): δ = 5.46 (s, 6 H, 3-OCH2), 7.59 (s, 3 H, Ar-H), 7.98–8.17 (m, 12 H, Ar-H), 10.10 (s, 3 H, 3-CHO). 13C NMR (DMSO-d 6): δ = 66.1, 126.8, 129.5, 129.8, 134.1, 136.7, 139.1, 164.7, 192.7. MS (EI): m/z = 564 [M]+. Anal. Calcd for C33H24O9: C, 70.21; H, 4.29. Found: C, 70.18; H, 4.06. Compound 15: colorless crystals (dioxane, 83%); mp 200–204 °C. IR (KBr): ν = 1724, 1701 (2 CO) cm–1. 1H NMR (300 MHZ, DMSO-d 6): δ = 5.59 (s, 8 H, 4-OCH2), 7.81–8.05 (m, 18 H, Ar-H), 10.03 (s, 4 H, 4- CHO). MS (EI): m/z = 726 [M]+. Anal. Calcd for C42H30O12: C, 69.42; H, 4.16. Found: C, 69.53; H, 4.09. 81 Typical Experimental Procedure for the Synthesis of the Polypodal Compounds 9, 10, 18–21, 24, and 25 To a solution of the appropriate poly(aldehydes) (1 mmol) in DMF (10 mL), dimedone (2, 3, 4, or 6 mmol), aminobenzimidazole (3, 3, 4, or 6 mmol), and ZnO nanocatalyst (10 mol%) were added. The reaction mixture was heated at reflux for 1 h (method A) or irradiated in a focused microwave reactor for 15 min at 160 °C (250 W; method B). The crude solid was isolated and recrystallized from DMF/ethanol. Compound 9: pale yellow crystals, (method A, 85%; method B, 88%); mp >300 °C. 1H NMR (DMSO-d 6): δ = 0.93 (s, 9 H, 3 CH3), 1.05 (s, 9 H, 3 CH3), 2.02–2.27 (m, 6 H, 3 CH2), 2.54–2.59 (m, 6 H, 3 CH2), 4.95 (s, 6 H, 3-OCH2), 6.35 (s, 3 H, H12), 6.81–7.36 (m, 27 H, Ar-H), 11.02 (br, 3 H, NH). 13C NMR (DMSO-d 6): δ = 26.7, 28.6, 32.2, 50.0, 53.5, 69.0, 106.5, 110.0, 114.4, 116.9, 120.3, 121.7, 126.3, 128.1, 131.9, 134.0, 137.4, 141.9, 145.4, 150.0, 157.7, 192.5. Anal. Calcd for C75H69N9O6: C, 75.54; H, 5.83; N, 10.57. Found: C, 75.43; H, 5.77; N, 10.50. Compound 10: pale yellow crystals, (method A, 89%; method B, 89%); mp >300 °C. IR (KBr): ν = 3230 (NH), 1722, 1647 (2CO) cm–1. 1H NMR (DMSO-d 6): δ = 0.90 (s, 9 H, 3 CH3), 1.05 (s, 9 H, 3 CH3), 2.07–2.28 (m, 6 H, 3 CH2), 2.55–2.61 (m, 6 H, 3 CH2), 5.27 (s, 6 H, 3-OCH2), 6.52 (s, 3 H, H12), 6.92–7.85 (m, 27 H, Ar-H),11. 2 (br, 3 H, NH). 13C NMR (DMSO-d 6) : δ = 26.5, 28.5, 32.1, 49.8, 53.9, 65.6, 105.5, 109.7, 116.9, 120.4, 121.8, 126.7, 127.3, 128.7, 129.2, 131.7, 136.7, 141.8, 145.1, 146.5, 150.5, 164.9, 192.4. Anal. Calcd for C78H69N9O9: C, 73.39; H, 5.45; N, 9.88. Found: C, 73.51; H, 5.61; N, 9.92. 82 The IR spectra were recorded on potassium bromide disks on a PyeUnicam SP3-300 and Shimadzu FTIR 8101 PC infrared spectrophotometer. The 1H NMR and 13C NMR spectra were determined on a Varian Mercury VX 300 NMR spectrometer using TMS as an internal standard and DMSO-d 6 as a solvent. Mass spectra were measured on a GCMSQP1000 EX spectrometer at 70 eV. Elemental analyses were carried out at the Microanalytical Center of Cairo University, Giza, Egypt. ZnO NPs were used as purchased from Sigma-Aldrich. Characterization of ZnO NPs was provided as Supplementary Data. Supplementary Material Supplementary Material Supporting Information