Synlett 2018; 29(12): 1627-1633
DOI: 10.1055/s-0037-1609967
letter
© Georg Thieme Verlag Stuttgart · New York

ZnO-Nanoparticles-Catalyzed Synthesis of Poly(tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)-ones) as Novel Multi-armed Molecules

Hadeer M. Diab
Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt   Email: ismail_shafy@yahoo.com   Email: aelwahy@hotmail.com
,
Ismail A. Abdelhamid*
Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt   Email: ismail_shafy@yahoo.com   Email: aelwahy@hotmail.com
,
Ahmed H. M. Elwahy*
Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt   Email: ismail_shafy@yahoo.com   Email: aelwahy@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 12 March 2018

Accepted after revision: 15 April 2018

Publication Date:
29 May 2018 (online)


Dedicated to Professor Klaus Hafner on the occasion of his 90th birthday

Abstract

A new series of poly(tetrahydrobenzimidazo[2,1-b]-quinazolin-1(2H)-ones) was synthesized in good yields using a multicomponent reaction of poly(aldehydes), dimedone, and 2-aminobenzimidazole in DMF under conventional heating as well as under microwave irradiation.

Supporting Information

 
  • References and Notes

  • 1 Sinkkonen J. Ovcharenko V. Zelenin KN. Bezhan IP. Chakchir BA. Al-assar F. Pihlaja K. Eur. J. Org. Chem. 2002; 2046
  • 2 Alagarsamy V. Pathak US. Bioorg. Med. Chem. 2007; 15: 3457
  • 3 Alagarsamy V. Revathi R. Meena S. Ramaseshu KV. Rajasekaran S. De Clerco E. Indian J. Pharm. Sci. 2004; 66: 459
  • 4 Mohammadi Ziarani G. Badiei A. Aslani Z. Lashgari N. Arab. J. Chem. 2015; 8: 54
  • 5 Chen LH. Chung TW. Narhe BD. Sun CM. ACS Comb. Sci. 2016; 18: 162
  • 6 Reddy MR. Reddy GC. S. Jeong YT. RSC Adv. 2015; 11423
  • 7 Kulkarni A. Török B. Green Chem. 2010; 12: 875
  • 8 Cioc RC. Ruijter E. Orru RV. A. Green Chem. 2014; 16: 2958
  • 9 Hügel HM. Molecules 2009; 14: 4936
  • 10 Dallinger D. Kappe CO. Chem. Rev. 2007; 107: 2563
  • 11 Kappe CO. Angew. Chem. Int. Ed. 2004; 43: 6250
  • 12 Kappe CO. Chem. Soc. Rev. 2008; 37: 1127
  • 13 Polshettiwar V. Varma RS. Acc. Chem. Res. 2008; 41: 629
  • 14 Polshettiwar V. Varma RS. Chem. Soc. Rev. 2008; 37: 1546
  • 15 Gawande MB. Shelke SN. Zboril R. Varma RS. Acc. Chem. Res. 2014; 47: 1338
  • 16 Menger FM. In Biomimetic and Bioorganic Chemistry III . Springer; Berlin, Heidelberg: 1986: 1-15
  • 17 Hadjichristidis N. Pitsikalis M. Iatrou H. Driva P. Sakellariou G. Chatzichristidi M. In Polymer Science: A Comprehensive Reference . Elsevier; ???: 2012: 29-111
  • 18 Muraoka H. Mori M. Ogawa S. Phosphorus, Sulfur Silicon Relat. Elem. 2015; 190: 1382
  • 19 Cremer J. Briehn CA. Chem. Mater. 2007; 19: 4155
  • 20 Cheng X. Zhao J. Cui C. Fu Y. Zhang X. J. Electroanal. Chem. 2012; 677: 24
  • 21 Olate FA. Parra ML. Vergara JM. Barberá J. Dahrouch M. Liq. Cryst. 2017; 44: 1173
  • 22 Pathak SK. Nath S. De J. Pal SK. Achalkumar AS. New J. Chem. 2017; 41: 4680
  • 23 Kanibolotsky AL. Perepichka IF. Skabara PJ. Chem. Soc. Rev. 2010; 39: 2695
  • 24 Pathak SK. Pradhan B. Gupta RK. Gupta M. Pal SK. Achalkumar AS. J. Mater. Chem. C 2016; 4: 6546
  • 25 Achalkumar AS. Hiremath US. Rao DS. S. Prasad SK. Yelamaggad CV. J. Org. Chem. 2013; 78: 527
  • 26 Westphal E. Prehm M. Bechtold IH. Tschierske C. Gallardo H. J. Mater. Chem. C 2013; 1: 8011
  • 27 Stackhouse PJ. Wilson A. Lacey D. Hird M. Liq. Cryst. 2010; 37: 1191
  • 28 Astruc D. Boisselier E. Ornelas C. Chem. Rev. 2010; 110: 1857
  • 29 Rajakumar P. Raja S. Tetrahedron Lett. 2008; 49: 6539
  • 30 Reger DL. Semeniuc RF. Smith MD. Inorg. Chem. 2003; 42: 8137
  • 31 Zhang W. Jin Y. Dynamic Covalent Chemistry: Principles, Reactions, and Applications. John Wiley and Sons; New York City, USA: 2017
  • 32 Grillaud M. Bianco A. J. Pept. Sci. 2015; 21: 330
  • 33 Roquet S. Cravino A. Leriche P. Alvque O. Frre P. Roncali J. Ale O. Fre P. J. Am. Chem. Soc. 2006; 128: 3459
  • 34 He C. He Q. Yi Y. Wu G. Bai F. Shuai Z. Li Y. J. Mater. Chem. 2008; 18: 4085
  • 35 He C. He Q. Yang X. Wu G. Yang C. Bai F. Shuai Z. Wang L. Li Y. J. Phys. Chem. C 2007; 111: 8661
  • 36 He C. He Q. Wu G. Bai F. Li Y. Proc. SPIE 2007; 6656: 66560Z
  • 37 Wu G. Zhao G. He C. Zhang J. He Q. Chen X. Li Y. Sol. Energy Mater. Sol. Cells 2009; 93: 108
  • 38 He C. He Q. He Y. Li Y. Bai F. Yang C. Ding Y. Wang L. Ye J. Sol. Energy Mater. Sol. Cells 2006; 90: 1815
  • 39 Roncali J. Leriche P. Cravino A. Adv. Mater. 2007; 19: 2045
  • 40 Jean R. Acc. Chem. Res. 2009; 42: 1719
  • 41 Dang D. Zhou P. Xiao M. Yang R. Zhu W. Dye Pigm. 2016; 133: 1
  • 42 Liu J. Wu Y. Qin C. Yang X. Yasuda T. Islam A. Zhang K. Peng W. Chen W. Han L. Energy Environ. Sci. 2014; 7: 2963
  • 43 Ameen S. Rub MA. Kosa SA. Alamry KA. Akhtar MS. Shin HS. Seo HK. Asiri AM. Nazeeruddin MK. ChemSusChem 2016; 9: 10
  • 44 Calió L. Kazim S. Grätzel M. Ahmad S. Angew. Chem. Int. Ed. 2016; 55: 14522
  • 45 Wang D. Astruc D. Chem. Rev. 2014; 114: 6949
  • 46 Baeza A. Guillena G. Ramón DJ. ChemCatChem 2016; 8: 49
  • 47 Shylesh S. Schünemann V. Thiel WR. Angew. Chem. Int. Ed. 2010; 49: 3428
  • 48 Elwahy AH. M. Shaaban MR. Heterocycles 2017; 94: 595
  • 49 Elwahy AH. M. Shaaban MR. RSC Adv. 2015; 5: 75659
  • 50 Banerjee S. Saha A. New J. Chem. 2013; 37: 4170
  • 51 Rao G. Kaushik M. Halve A. Tetrahedron Lett. 2012; 53: 2741
  • 52 Bhattacharyya P. Pradhan K. Paul S. Das A. Tetrahedron Lett. 2012; 53: 4687
  • 53 El-Fatah NA. A. Darweesh AF. Mohamed AA. Abdelhamid IA. Elwahy AH. M. Monatsh. Chem. 2017; 148: 2107
  • 54 Abdella AM. Moatasim Y. Ali MA. Elwahy AH. M. Abdelhamid IA. J. Heterocycl. Chem. 2017; 54: 1854
  • 55 Abdelmoniem AM. Ghozlan SA. S. Butenschön H. Abdelhamid IA. J. Heterocycl. Chem. 2017; 54: 473
  • 56 Abdelmoniem AM. Salaheldin TA. Abdelhamid IA. Elwahy AH. M. J. Heterocycl. Chem. 2017; 54: 2670
  • 57 Al-Awadi NA. Ibrahim MR. Abdelhamid IA. Elnagdi MH. Tetrahedron 2008; 64: 8202
  • 58 Salama SK. Darweesh AF. Abdelhamid IA. Elwahy AH. M. J. Heterocycl. Chem. 2017; 54: 305
  • 59 Sanad SM. H. Kassab RM. Abdelhamid IA. Elwahy AH. M. Heterocycles 2016; 92: 910
  • 60 Elwahy AH. M. Shaaban MR. Curr. Org. Synth. 2015; 10: 425
  • 61 Shaaban MR. Elwahy AH. M. Curr. Org. Synth. 2015; 11: 471
  • 62 Abdella AM. Elwahy AH. M. Abdelhamid IA. Curr. Org. Synth. 2016; 13: 601
  • 63 Shaaban MR. Elwahy AH. M. J. Heterocycl. Chem. 2012; 49: 640
  • 64 Elwahy AH. M. Tetrahedron Lett. 2001; 42: 5123
  • 65 Abdelhamid IA. Darweesh AF. Elwahy AH. M. Tetrahedron Lett. 2015; 56: 7085
  • 66 Salem ME. Darweesh AF. Farag AM. Elwahy AH. M. J. Heterocycl. Chem. 2017; 54: 586
  • 67 Abd El-Fatah NA. Darweesh AF. Mohamed AA. Abdelhamid IA. Elwahy AH. M. Tetrahedron 2017; 73: 1436
  • 68 Salem ME. Darweesh AF. Farag AM. Elwahy AH. M. Tetrahedron 2016; 72: 712
  • 69 Elwahy AH. M. Sarhan RM. Badawy MA. Curr. Org. Synth. 2013; 10: 786
  • 70 Mohamed MF. Darweesh AF. Elwahy AH. M. Abdelhamid IA. RSC Adv. 2016; 6: 40900
  • 71 Goli-Jolodar O. Shirini F. J. Iran. Chem. Soc. 2016; 13: 1077
  • 72 Puligoundla RG. Karnakanti S. Bantu R. Nagaiah K. Kondra SB. Nagarapu L. Tetrahedron Lett. 2013; 54: 2480
  • 73 Krishnamurthy G. Jagannath KV. J. Chem. Sci. 2013; 125: 807
  • 74 Maleki A. Aghaei M. Ghamari N. Chem. Lett. 2015; 44: 259
  • 75 Mousavi MR. Maghsoodlou MT. J. Iran. Chem. Soc. 2015; 12: 743
  • 76 Amoozadeh A. Rahmani S. J. Mol. Catal. A: Chem. 2015; 396: 96
  • 77 Insuasty B. Salcedo A. Quiroga J. Abonia R. Nogueras M. Cobo J. Salido S. Heterocycl. Commun. 2004; 10: 399
  • 78 Hemmati B. Javanshir S. Dolatkhah Z. RSC Adv. 2016; 6: 50431
  • 79 Compound 7 was obtained by heating a mixture of 4-formylbenzoic acid (11, 1 mmol), dimedone (2, 1 mmol), and aminobenzimidazole (3, 1 mmol) in DMF (10 mL) at reflux for 1 h. The crude solid was isolated and recrystallized from DMF as colorless crystals (82%); mp > 300 °C. 1H NMR (300 MHz, DMSO-d6 ): δ = 0.91 (s, 3 H, CH3), 1.06 (s, 3 H, CH3), 2.02–2.23 (m, 2 H, CH2), 2.61–2.67 (m, 2 H, CH2), 6.49 (s, 1 H, H12), 6.95–7.95 (m, 8 H, Ar-H), 11.60–12-81 (br, 2 H, NH, COOH). MS (EI): m/z = 387 [M]+. Anal. Calcd for C23H21N3O3: C, 71.30; H, 5.46; N, 10.85. Found: C, 71.43; H, 5.38; N, 10.63.
  • 80 Typical Experimental Procedure for the Synthesis of Poly(aldehydes) 13, 15, 17 and 23 To a stirred solution of 4-formylbenzoic acid (11) in ethanol (10 mL), KOH (3, 4, or 6 mmol) was added. The reaction mixture was stirred at room temperature for 10 min. The solvent was then removed in vacuo, and the remaining solid was triturated with dry diethyl ether, collected, and dried to give the corresponding potassium salts. A solution of the latter salts (3, 4, or 6 mmol) and the corresponding poly(bromo) compounds (1 mmol) in DMF (20 mL) was heated under reflux for 5 min during which time KBr was precipitated. The solvent was then removed in vacuo, and the remaining material was washed with water (50 mL) and crystallized from the proper solvents to give the corresponding poly(aldehydes). Compound 13: colorless crystals (butanol, 76%); mp >300 °C. IR (KBr): ν = 1714 (br, 2 CO) cm–1. 1H NMR (DMSO-d 6): δ = 5.46 (s, 6 H, 3-OCH2), 7.59 (s, 3 H, Ar-H), 7.98–8.17 (m, 12 H, Ar-H), 10.10 (s, 3 H, 3-CHO). 13C NMR (DMSO-d 6): δ = 66.1, 126.8, 129.5, 129.8, 134.1, 136.7, 139.1, 164.7, 192.7. MS (EI): m/z = 564 [M]+. Anal. Calcd for C33H24O9: C, 70.21; H, 4.29. Found: C, 70.18; H, 4.06. Compound 15: colorless crystals (dioxane, 83%); mp 200–204 °C. IR (KBr): ν = 1724, 1701 (2 CO) cm–1. 1H NMR (300 MHZ, DMSO-d 6): δ = 5.59 (s, 8 H, 4-OCH2), 7.81–8.05 (m, 18 H, Ar-H), 10.03 (s, 4 H, 4- CHO). MS (EI): m/z = 726 [M]+. Anal. Calcd for C42H30O12: C, 69.42; H, 4.16. Found: C, 69.53; H, 4.09.
  • 81 Typical Experimental Procedure for the Synthesis of the Polypodal Compounds 9, 10, 18–21, 24, and 25 To a solution of the appropriate poly(aldehydes) (1 mmol) in DMF (10 mL), dimedone (2, 3, 4, or 6 mmol), aminobenzimidazole (3, 3, 4, or 6 mmol), and ZnO nanocatalyst (10 mol%) were added. The reaction mixture was heated at reflux for 1 h (method A) or irradiated in a focused microwave reactor for 15 min at 160 °C (250 W; method B). The crude solid was isolated and recrystallized from DMF/ethanol. Compound 9: pale yellow crystals, (method A, 85%; method B, 88%); mp >300 °C. 1H NMR (DMSO-d 6): δ = 0.93 (s, 9 H, 3 CH3), 1.05 (s, 9 H, 3 CH3), 2.02–2.27 (m, 6 H, 3 CH2), 2.54–2.59 (m, 6 H, 3 CH2), 4.95 (s, 6 H, 3-OCH2), 6.35 (s, 3 H, H12), 6.81–7.36 (m, 27 H, Ar-H), 11.02 (br, 3 H, NH). 13C NMR (DMSO-d 6): δ = 26.7, 28.6, 32.2, 50.0, 53.5, 69.0, 106.5, 110.0, 114.4, 116.9, 120.3, 121.7, 126.3, 128.1, 131.9, 134.0, 137.4, 141.9, 145.4, 150.0, 157.7, 192.5. Anal. Calcd for C75H69N9O6: C, 75.54; H, 5.83; N, 10.57. Found: C, 75.43; H, 5.77; N, 10.50. Compound 10: pale yellow crystals, (method A, 89%; method B, 89%); mp >300 °C. IR (KBr): ν = 3230 (NH), 1722, 1647 (2CO) cm–1. 1H NMR (DMSO-d 6): δ = 0.90 (s, 9 H, 3 CH3), 1.05 (s, 9 H, 3 CH3), 2.07–2.28 (m, 6 H, 3 CH2), 2.55–2.61 (m, 6 H, 3 CH2), 5.27 (s, 6 H, 3-OCH2), 6.52 (s, 3 H, H12), 6.92–7.85 (m, 27 H, Ar-H),11. 2 (br, 3 H, NH). 13C NMR (DMSO-d 6) : δ = 26.5, 28.5, 32.1, 49.8, 53.9, 65.6, 105.5, 109.7, 116.9, 120.4, 121.8, 126.7, 127.3, 128.7, 129.2, 131.7, 136.7, 141.8, 145.1, 146.5, 150.5, 164.9, 192.4. Anal. Calcd for C78H69N9O9: C, 73.39; H, 5.45; N, 9.88. Found: C, 73.51; H, 5.61; N, 9.92.
  • 82 The IR spectra were recorded on potassium bromide disks on a PyeUnicam SP3-300 and Shimadzu FTIR 8101 PC infrared spectrophotometer. The 1H NMR and 13C NMR spectra were determined on a Varian Mercury VX 300 NMR spectrometer using TMS as an internal standard and DMSO-d 6 as a solvent. Mass spectra were measured on a GCMSQP1000 EX spectrometer at 70 eV. Elemental analyses were carried out at the Microanalytical Center of Cairo University, Giza, Egypt. ZnO NPs were used as purchased from Sigma-Aldrich. Characterization of ZnO NPs was provided as Supplementary Data.