Synlett 2018; 29(13): 1711-1716
DOI: 10.1055/s-0037-1610187
letter
© Georg Thieme Verlag Stuttgart · New York

A Unique Skeletal Rearrangement of a Bicyclo[3.3.1]nonanetrione to a Tetrahydroquinolin-2(1H)-one System

Qi Shen
a   State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: wujnju@nju.edu.cn   Email: lijxnju@nju.edu.cn
,
Fang Liu
b   State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: yongliang@nju.edu.cn
,
Yu-Chao Zhang
a   State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: wujnju@nju.edu.cn   Email: lijxnju@nju.edu.cn
,
Jie Wang
a   State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: wujnju@nju.edu.cn   Email: lijxnju@nju.edu.cn
,
Lei Zhang
a   State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: wujnju@nju.edu.cn   Email: lijxnju@nju.edu.cn
,
Yue Wang
a   State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: wujnju@nju.edu.cn   Email: lijxnju@nju.edu.cn
,
Hong-Xi Xu
c   School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. of China
,
Zhuzhou Shao
b   State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: yongliang@nju.edu.cn
,
Yang Cao
d   Institute of New Energy, Shenzhen 518031, P. R. of China
,
Jing Wu*
a   State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: wujnju@nju.edu.cn   Email: lijxnju@nju.edu.cn
,
Yong Liang*
b   State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: yongliang@nju.edu.cn
,
Jian-Xin Li*
a   State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: wujnju@nju.edu.cn   Email: lijxnju@nju.edu.cn
› Author Affiliations
This work was supported by National Natural Science Foundation of China (21702101, 21778029, and 21761142001) and the Fundamental Research Funds for the Central Universities in China. Y.L. thanks the ­National Thousand Young Talents Program, Jiangsu Specially­Appointed Professor Plan, and the NSF of Jiangsu Province (BK20170631) in China for financial support. Y.C. acknowledges the support from the Shenzhen Peacock Plan (No.1208040050847074).
Further Information

Publication History

Received: 06 April 2018

Accepted after revision: 27 May 2018

Publication Date:
02 July 2018 (online)


Abstract

The unexpected formation of a 4-hydroxytetrahydroquinolin-2(1H)-one from a bicyclo[3.3.1]nonanetrione system and an amino alcohol in the presence of TsOH is reported. The mechanism of this transformation was studied by DFT calculations. The reaction provides an entry to the synthesis of highly functionalized 4-hydroxytetrahydroquinolin-2(1H)-ones.

Supporting Information

 
  • References and Notes

    • 1a Verotta L. Phytochem. Rev. 2002; 1: 389
    • 1b Simpkins NS. Chem. Commun. 2013; 49: 1042
    • 1c Horeischi F. Guttroff C. Plietker B. Chem. Commun. 2015; 51: 2259
    • 1d Bellavance G. Barriault L. Angew. Chem. Int. Ed. 2014; 53: 6701
    • 1e Uetake Y. Uwamori M. Nakada M. J. Org. Chem. 2015; 80: 1735
    • 1f Liao Y. Liu X. Yang J. Lao Y.-Z. Yang X.-W. Li X.-N. Zhang J.-J. Ding Z.-j. Xu H.-X. Xu G. Org. Lett. 2015; 17: 1172
    • 1g Sparling BA. Moebius DC. Shair MD. J. Am. Chem. Soc. 2013; 135: 644
    • 1h Ahmad NM. Rodeschini V. Simpkins NS. Ward SE. Blake AJ. J. Org. Chem. 2007; 72: 4803
    • 1i Kong L.-M. Long X.-W. Yang X.-W. Xia F. Khan A. Yan H. Deng J. Li X. Xu G. Tetrahedron Lett. 2017; 58: 2113
    • 2a Ciochina R. Grossman RB. Chem. Rev. 2006; 106: 3963
    • 2b Grenning AJ. Boyce JH. Porco JA. Jr. J. Am. Chem. Soc. 2014; 136: 11799
    • 2c Gartner M. Müller T. Simon JC. Giannis A. Sleeman JP. ChemBioChem 2005; 6: 171
    • 2d van Klink JW. Larsen L. Perry NB. Weavers RT. Cook GM. Bremer PJ. MacKenzie AD. Kirikae T. Bioorg. Med. Chem. 2005; 13: 6651
    • 2e Liao Y. Yang S.-Y. Li X.-N. Yang X.-W. Xu G. Sci. China: Chem. 2016; 59: 1216
    • 3a Surup F. Wagner O. von Frieling J. Schleicher M. Oess S. Müller P. Grond S. J. Org. Chem. 2007; 72: 5085
    • 3b Adam W. Hartung J. Okamoto H. Marquardt S. Nau WM. Pischel U. Saha-Möller CR. Špehar K. J. Org. Chem. 2002; 67: 6041
    • 3c Jessen HJ. Gademann K. Nat. Prod. Rep. 2010; 27: 1168
    • 3d Katsina T. Anagnostaki EE. Mitsa F. Sarli V. Zografos AL. RSC Adv. 2016; 6: 6978
    • 3e Anagnostaki EE. Fotiadou AD. Demertzidou V. Zografos AL. Chem. Commun. 2014; 50: 6879
    • 3f Halo LM. Heneghan MN. Yakasai AA. Song Z. Williams K. Bailey AM. Cox RJ. Lazarus CM. Simpson TJ. J. Am. Chem. Soc. 2008; 130: 17988
    • 3g Kumar KA. Kannaboina P. Das P. Org. Biomol. Chem. 2017; 15: 5457
    • 3h Vegi SR. Boovanahalli SK. Patro B. Mukkanti K. Eur. J. Med. Chem. 2011; 46: 1803
    • 3i Selness SR. Devraj RV. Monahan JB. Boehm TL. Walker JK. Devadas B. Durley RC. Kurumbail R. Shieh H. Xing L. Hepperle M. Rucker PV. Jerome KD. Benson AG. Marrufo LD. Madsen HM. Hitchcock J. Owen TJ. Christie L. Promo MA. Hickory BS. Alvira E. Naing W. Blevis-Bal R. Bioorg. Med. Chem. Lett. 2009; 19: 5851
    • 3j Miyagawa T. Nagai K. Yamada A. Sugihara Y. Fukuda T. Fukuda T. Uchida R. Tomoda H. Ōmura S. Nagamitsu T. Org. Lett. 2011; 13: 1158
    • 4a Wall ME. Wani MC. Cook CE. Palmer KH. McPhail AT. Sim GA. J. Am. Chem. Soc. 1966; 88: 3888
    • 4b Smith AB. III. Atasoylu O. Beshore DC. Synlett 2009; 16: 2643
    • 4c Li Q. Mitscher LA. Shen LL. Med. Res. Rev. 2000; 20: 231
    • 4d Simonetti SO. Larghi EL. Kaufman TS. Org. Biomol. Chem. 2016; 14: 2625
    • 5a Kozikowski AP. Campiani G. Sun L.-Q. Wang S. Saxena A. Doctor BP. J. Am. Chem. Soc. 1996; 118: 11357
    • 5b Campiani G. Kozikowski AP. Wang S. Ming L. Nacci V. Saxena A. Doctor BP. Bioorg. Med. Chem. Lett. 1998; 8: 1413
    • 5c Parreira RL. T. Abrahão OJr. Galembeck SE. Tetrahedron 2001; 57: 3243
    • 6a Mercedes T. Salvador G. Margarita P. Curr. Org. Chem. 2005; 9: 1757
    • 6b Heravi MM. Hamidi H. J. Iran. Chem. Soc. 2013; 10: 265
    • 6c Razavi N. Akhlaghinia B. New J. Chem. 2016; 40: 447
    • 7a Decker H. Ber. Dtsch. Chem. Ges. 1892; 25: 443
    • 7b Smits R. Turovska B. Belyakov S. Plotniece A. Duburs G. Chem. Phys. Lett. 2016; 649: 84
  • 8 Baron H. Remfry FG. P. Thorpe JF. J. Chem. Soc., Trans. 1904; 85: 1726
    • 9a Spessard SJ. Stoltz BM. Org. Lett. 2002; 4: 1943
    • 9b Schönwälder K.-H. Kollat P. Stezowski JJ. Effenberger F. Chem. Ber. 1984; 117: 3280
  • 10 Vidali VP. Mitsopoulou KP. Dakanali M. Demadis KD. Odysseos AD. Christou YA. Couladouros EA. Org. Lett. 2013; 15: 5404
  • 11 4-Hydroxy-1-(3-hydroxypropyl)-7,7-dimethyl-6-(3-methylbut-2-en-1-yl)-5,6,7,8-tetrahydroquinolin-2(1H)-one (4) A 250 mL round-bottomed flask was charged with bicyclic compound 1 (1.3 g, 5.0 mmol, 1.0 equiv) in toluene (100 mL). TsOH·H2O (20 mol%) was added, followed by 3-aminopropan-1-ol (0.8 mL, 10.0 mmol, 2.0 equiv). The flask was fitted with a Dean–Stark head and a condenser, and the mixture was heated at 120 °C for 4 h. The mixture was then concentrated to a brown oil that was purified by chromatography (silica gel, 1–3% MeOH–CH2Cl2) to give a white foam; yield: 1.4 g (90%); Rf = 0.40 (10% MeOH–CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 6.10 (s, 1 H), 5.15 (t, J = 7.0 Hz, 1 H), 4.32–4.19 (m, 1 H), 4.16–4.02 (m, 1 H), 3.54 (s, 2 H), 2.68 (dd, J = 17.7, 5.5 Hz, 1 H), 2.44 (s, 2 H), 2.32–2.20 (m, 1 H), 2.08 (dd, J = 17.6, 9.6 Hz, 1 H), 1.88–1.79 (m, 2 H), 1.79–1.71 (m, 1 H), 1.70 (s, 3 H), 1.59 (d, J = 1.2 Hz, 3 H), 1.40 (m, 1 H), 1.07 (s, 3 H), 0.87 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 166.63, 165.31, 142.97, 132.54, 123.08, 110.76, 96.93, 58.16, 41.85, 41.45, 39.45, 32.77, 32.23, 28.85, 27.90, 25.86, 24.77, 21.35, 17.81. HRMS (ESI): m/z [M + H]+ calcd for C19H30NO3: 320.2225; found: 320.2211.
  • 12 Geometries of minima and transition structures were optimized at the level of M06–2X with the 6–31G (d) basis set. Solvent effects in toluene were evaluated on the gas-phase ­optimized structures by using the CPCM model at the M06–2X/6–311+G(d,p) level. For details, see the Supporting Information.
    • 13a Murakami K. Ohmiya H. Yorimitsu H. Oshima K. Tetra­hedron Lett. 2008; 49: 2388
    • 13b White JD. Li Y. Kim J. Terinek M. Org. Lett. 2013; 15: 882
    • 13c Wadsworth JM. Clarke DJ. McMahon SA. Lowther JP. Beattie AE. Langridge-Smith PR. R. Broughton HB. Dunn TM. Naismith JH. Campopiano DJ. J. Am. Chem. Soc. 2013; 135: 14276
    • 13d Giger L. Caner S. Obexer R. Kast P. Baker D. Ban N. Hilvert D. Nat. Chem. Biol. 2013; 9: 494
    • 13e Yoshioka E. Tanaka H. Kohtani S. Miyabe H. Org. Lett. 2013; 15: 3938
    • 13f vom Stein T. den Hartog T. Buendia J. Stoychev S. Mottweiler J. Bolm C. Klankermayer J. Leitner W. Angew. Chem. Int. Ed. 2015; 54: 5859
    • 13g Maity R. Gharui C. Sil AK. Pan SC. Org. Lett. 2017; 19: 662