Synlett 2018; 29(13): 1729-1734
DOI: 10.1055/s-0037-1610457
letter
© Georg Thieme Verlag Stuttgart · New York

C–H Monoarylation of Naphthylpyrimidines with Aryl Chlorides Catalyzed by a Water-Soluble Ruthenium Complex

Hong-Mei Li
a   College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. of China   Email: wzq197811@163.com
,
Tian-Yong Tu
b   College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. of China   Email: xqhao@zzu.edu.cn
,
Xin Han
b   College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. of China   Email: xqhao@zzu.edu.cn
,
Zhi-Qiang Wang*
a   College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. of China   Email: wzq197811@163.com
,
Wei-Jun Fu
a   College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. of China   Email: wzq197811@163.com
,
Xin-Qi Hao*
b   College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. of China   Email: xqhao@zzu.edu.cn
,
Mao-Ping Song
b   College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. of China   Email: xqhao@zzu.edu.cn
,
Chen Xu*
a   College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. of China   Email: wzq197811@163.com
c   College of Food and Pharmacy, Luoyang Normal University, Luoyang 471022, P. R. of China   Email: xubohan@163.com
› Author Affiliations
This work was supported by the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (154100510015) and the Tackle Key Problems of Science and Technology Project of Henan Province (162102210125).

Further Information

Publication History

Received: 01 May 2018

Accepted after revision: 30 May 2018

Publication Date:
10 July 2018 (online)


Abstract

Selective monoarylation of naphthylpyrimidines with a variety of aryl chlorides through C–H bond activation in water was achieved by using a water-soluble [RuCl2-(η6-PhOCH2CH2OH)]2/phosphine catalytic system. The monoarylation occurred at the C-2 carbon of the naphthalene moiety, and selectively polysubstituted naphthylpyrimidines were obtained by a one-pot reaction involving a subsequent hetarylation with 2-pyridyl chlorides.

Supporting Information

 
  • References and Notes

    • 1a Joule JA. Mills K. Heterocyclic Chemistry . 5th ed., Blackwell; Cambridge: 2000. 5th ed. 249
    • 1b Blackburn MJ, Gait GM, Loakes D, Williams DM. Nucleic Acids in Chemistry and Biology . 3rd ed. Oxford University Press; Oxford: 2006. Chapter 8, 295
    • 1c Cherukukupalli S. Rajshekhar R. Chandrasekaran B. Hampnnavar GA. Thapliyal N. Palakollu VN. Eur. J. Med. Chem. 2017; 126: 298
    • 2a Chinchilla R. Nájera C. Yus M. Chem. Rev. 2004; 104: 2667
    • 2b Movassaghi M. Hill MD. J. Am. Chem. Soc. 2006; 128: 14254
    • 2c Radi M. Schenone S. Botta M. Org. Biomol. Chem. 2009; 7: 2841
    • 2d Karad SN. Liu R.-S. Angew. Chem. Int. Ed. 2014; 53: 9072
    • 2e Zhou Y. Tang ZH. Song QL. Adv. Synth. Catal. 2017; 359: 952
    • 3a C–H Activation . Yu J.-Q. Shi Z.-J. Springer; Berlin: 2010
    • 3b Ackermann L. Chem. Rev. 2011; 111: 1315
    • 3c Zhang M. Zhang Y. Jie X. Zhao H. Li G. Su W. Org. Chem. Front. 2014; 1: 843
    • 3d Gensch T. Hopkinson MN. Glorius F. Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 4a Campeau L.-C. Fagnou K. Chem. Commun. 2006; 1253
    • 4b Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
    • 4c Topczewski JJ. Sanford MS. Chem. Sci. 2015; 6: 70
    • 4d Xu Y. Young MC. Wang C. Magness DM. Dong G. Angew. Chem. Int. Ed. 2016; 55: 9084
    • 4e Ding Q. Ye S. Cheng G. Wang P. Farmer ME. Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 417
    • 5a Colby DA. Bergman RG. Ellman JA. Chem. Rev. 2010; 110: 624
    • 5b Song G. Wang F. Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 5c Xie F. Qi Z. Li X. Angew. Chem. Int. Ed. 2013; 52: 11862
    • 5d Yu D.-G. de Azambuja F. Glorius F. Angew. Chem. Int. Ed. 2014; 53: 2754
    • 6a Iridium Complexes in Organic Synthesis . Oro LA. Claver C. Wiley-VCH; Weinheim: 2009
    • 6b Zhang S.-S. Jiang C.-Y. Wu J.-Q. Liu X.-G. Li Q. Huang Z.-S. Li D. Wang H. Chem. Commun. 2015; 51: 10240
    • 6c Shin K. Park S.-W. Chang S. J. Am. Chem. Soc. 2015; 137: 8584
    • 7a Ackermann L. Org. Lett. 2005; 7: 3123
    • 7b Ackermann L. Born R. Spatz JH. Althammer A. Gschrei CJ. Pure Appl. Chem. 2006; 78: 209
    • 7c Ackermann L. Vicente R. Althammer A. Org. Lett. 2008; 10: 2299
    • 7d Ackermann L. Born R. Vicente R. ChemSusChem 2009; 2: 546
    • 7e Arockiam PB. Bruneau C. Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 7f Juliá-Hernández F. Simonetti M. Larrosa I. Angew. Chem. Int. Ed. 2013; 52: 11458
    • 7g De Sarkar S. Liu W. Kozhushkov SI. Ackermann L. Adv. Synth. Catal. 2014; 356: 1461
    • 7h Manikandan R. Jeganmohan M. Org. Biomol. Chem. 2015; 13: 10420
    • 7i Li Y.-G. Wang Z.-Y. Zou Y.-L. So C.-M. Kwong F.-Y. Qin H.-L. Kantchev EA. B. Synlett 2017; 28: 499
    • 8a Schischko A. Ren H. Kaolaneris N. Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 1576
    • 8b Nareddy P. Jordan F. Szostak M. ACS Catal. 2017; 7: 5721
    • 8c Zha G.-F. Qin H.-L. Kantchev EA. B. RSC Adv. 2016; 6: 30875
    • 8d Li B. Dixneuf PH. Chem. Soc. Rev. 2013; 42: 5744
    • 8e Adrio LA. Gimeno J. Vicent C. Chem. Commun. 2013; 49: 8320
    • 8f Ackermann L. Wang L. Wolfram R. Lygin AV. Org. Lett. 2012; 14: 728
    • 8g Ackermann L. Lygin AV. Org. Lett. 2012; 14: 764
    • 8h Ackermann L. Pospech J. Potukuchi HK. Org. Lett. 2012; 14: 2146
    • 8i Ackermann L. Fenner S. Org. Lett. 2011; 13: 6548
    • 8j Luo N. Yu Z. Chem. Eur. J. 2010; 16: 787
    • 9a Soleimannejad J. White C. Organometallics 2005; 24: 2538
    • 9b Ang WE. Dyson PJ. Eur. J. Inorg. Chem. 2006; 4003
    • 9c Lastra-Barreira B. Díez J. Crochet P. Green Chem. 2009; 11: 1681
    • 9d Huang C.-Y. Kuan K.-Y. Liu Y.-H. Peng S.-M. Liu S.-T. Organometallics 2014; 33: 2831
    • 9e Hameury S. De Frémont P. Braunstein P. Chem. Soc. Rev. 2017; 46: 632
    • 10a Chen X. Hao X.-S. Goodhue CE. Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 10b Mei T.-S. Giri R. Maugel N. Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 5215
    • 10c Chen Z. Wang B. Zhang J. Yu W. Liu Z. Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 10d Seki M. Synlett 2015; 47: 1423
    • 10e Sun H. Guimond N. Huang Y. Org. Biomol. Chem. 2016; 14: 8389
    • 11a Song B.-R. Zheng X.-J. Mo J. Xu B. Adv. Synth. Catal. 2010; 352: 329
    • 11b Li J. Warratz S. Zell D. De Sarkar S. Ishikawa EE. Ackermann L. J. Am. Chem. Soc. 2015; 137: 13894
    • 11c Meng G. Szostak M. Org. Lett. 2016; 18: 796
    • 12a Yanagisawa S. Ueda K. Taniguchi T. Itami K. Org. Lett. 2008; 10: 4673
    • 12b Hong X. Wang H. Qian G. Tan Q. Xu B. J. Org. Chem. 2014; 79: 3279
    • 12c Sharma P. Rohilla S. Jain N. J. Org. Chem. 2015; 80: 4116
    • 12d Gayakhe V. Sanghvi YS. Fairlamb IJ. S. Kapdi AR. Chem. Commun. 2015; 51: 11944
    • 13a Norinder J. Matsumoto M. Yoshikai N. Nakamura E. J. Am. Chem. Soc. 2008; 130: 5858
    • 13b Lakshman MK. Deb AC. Chamala RR. Pradhan P. Pratap R. Angew. Chem. Int. Ed. 2011; 50: 11400
    • 13c Štefane B. Fabris J. Požgan F. Eur. J. Org. Chem. 2011; 3474
    • 13d Lu M.-Z. Lu P. Xu Y.-H. Loh T.-P. Org. Lett. 2014; 16: 2614
    • 13e Zhu X. Su J.-H. Du C. Wang Z.-L. Ren C.-J. Niu J.-L. Song M.-P. Org. Lett. 2017; 19: 596
    • 14a Xu C. Zhang Y.-P. Wang Z.-Q. Fu W.-J. Hao X.-Q. Xu Y. Ji B.-M. Chem. Commun. 2010; 46: 6852
    • 14b Xu C. Hao XQ. Xiao Z.-Q. Wang Z.-Q. Yuan X.-E. Fu W.-J. Ji B.-M. Song M.-P. J. Org. Chem. 2013; 78: 8730
    • 14c Xu C. Li H.-M. Yuan X.-R. Xiao Z.-Q. Wang Z.-Q. Fu W.-J. Ji B.-M. Hao X.-Q. Song M.-P. Org. Biomol. Chem. 2014; 12: 3114
    • 14d Xu C. Xiao Z.-Q. Li H.-M. Han X. Wang Z.-Q. Fu W.-J. Ji B.-M. Hao X.-Q. Song M.-P. Eur. J. Org. Chem. 2015; 7427
  • 15 Oi S. Fukita S. Hirata N. Watanuki N. Miyano S. Inoue Y. Org. Lett. 2001; 3: 2579
    • 16a Ackermann L. Althammer A. Born R. Angew. Chem. Int. Ed. 2006; 45: 2619
    • 16b Li W. Arockiam PB. Fischmeister C. Bruneau C. Dixneuf PH. Green Chem. 2011; 13: 2315
    • 16c Sabater S. Mata JA. Peris E. Organometallics 2012; 31: 6450
    • 16d Hubrich J. Ackermann L. Eur. J. Org. Chem. 2016; 3700
    • 16e Biafora A. Krause T. Hackenberger D. Belitz F. Gooßen LJ. Angew. Chem. Int. Ed. 2016; 55: 14752
  • 17 Arockiam PB. Fischmeister C. Bruneau C. Dixneuf PH. Angew. Chem. Int. Ed. 2010; 49: 6629
    • 18a Arockiam PB. Fischmeister C. Bruneau C. Dixneuf PH. Green Chem. 2013; 15: 67
    • 18b Li B. Darcel C. Dixneuf PH. ChemCatChem 2014; 6: 127
  • 19 CCDC 1572365–1572371 contain the supplementary crystallographic data for compounds 6, 7, 10, 15, 20, 22, and 24, respectively. The data can be obtained free of charge from The ­Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 20a Zheng X. Song B. Li G. Liu B. Deng H. Xu B. Tetrahedron Lett. 2010; 51: 6641
    • 20b Zheng X. Song B. Xu B. Eur. J. Org. Chem. 2010; 4376
    • 20c Bhadra S. Mathesis C. Katayev D. Gooßen LJ. Angew. Chem. Int. Ed. 2013; 52: 9279
    • 21a Williams EL. Haavisto K. Li J. Jabbour GE. Adv. Mater (Weinheim, Ger.) 2007; 19: 197
    • 21b Roy B. De N. Majumdar KC. Chem. Eur. J. 2012; 18: 14560
    • 21c Jiang R. Yang X. Wu D. Org. Biomol. Chem. 2017; 15: 6888
    • 22a Rossi R. Bellina F. Lessi M. Manzini C. Perego LA. Synthesis 2014; 46: 2833
    • 22b Suzuki S. Yamaguchi J. Chem. Commun. 2017; 53: 1568
    • 22c Ping L. Chung DS. Bouffard J. Lee S. Chem. Soc. Rev. 2017; 46: 4299
  • 23 Substituted Naphthylpyrimidine Derivatives; General Procedure A reaction vessel was charged with the appropriate amount of catalyst A, naphthylpyrimidine (0.5 mmol), aryl chloride (0.6 mmol), K2CO3 (1.5 mmol), RCO2K (0.1 mmol), PAr3 (0.1 mmol), and H2O (3 mL) under N2. The vessel was then sealed and heated at 120 °C (oil-bath temperature) for 24 h. The resulting mixture was cooled to r.t., and the aqueous layer was extracted with EtOAc. The organic layers were combined, washed with H2O, dried (MgSO4), filtered, and concentrated on a rotary evaporator. The resulting residue was purified by flash chromatography. 2-(2-Phenyl-1-naphthyl)pyrimidine (1) White solid; yield: 126 mg (89%). 1H NMR (400 MHz, CDCl3): δ = 8.79 (d, J = 4.9 Hz, 2 H), 8.04 (d, J = 8.5 Hz, 1 H), 7.96 (d, J = 8.0 Hz, 1 H), 7.65 (d, J = 8.5 Hz, 1 H), 7.47–7.58 (m, 3 H), 7.20–7.25 (m, 6 H). 13C NMR (100 MHz, CDCl3): δ = 167.8, 156.8, 141.5, 138.8, 135.2, 132.8, 131.7, 129.5, 129.2, 128.1, 128.0, 127.9, 126.9, 126.6, 125.9, 125.5, 118.8. MS (EI, 70 eV): m/z = 283.1 [M + H]+. Anal. Calcd for C20H14N2: C, 85.08; H, 5.00; N, 9.92. Found: C, 85.32; H, 4.85; N, 9.83.