Synlett 2021; 32(08): 805-809
DOI: 10.1055/s-0037-1610766
letter

Copper(I) Iodide Catalyzed Tandem Reactions of N-Propargyl-N-(2-iodoaryl)amides with Sodium Azide: An Efficient Synthesis of [1,2,3]Triazolo[1,5-a]quinoxalines

Wanli Chen
a   Center of Analysis & Measurement, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Xiangtu Tu
b   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Mingxia Xu
b   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Youqun Chu
b   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Yinghong Zhu
b   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
› Author Affiliations
Financial assistance from the National Key Research and Development Program of China (No. 2017YFB0307503) is greatly appreciated.


Abstract

Copper-catalyzed reactions of N-propargyl-N-(2-iodoaryl)amides with sodium azide have been developed, providing a novel and efficient method for the synthesis of [1,2,3]triazolo[1,5-a]quinoxaline compounds under mild conditions in moderate yields by tandem copper-catalyzed azide-alkyne cycloaddition and Ullmann-type coupling.

Supporting Information



Publication History

Received: 29 December 2020

Accepted after revision: 01 February 2021

Article published online:
26 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Lauria A, Patella C, Dattolo G, Almerico AM. J. Med. Chem. 2008; 51: 2037
    • 1b Pradeep K, Kotra V, Priyadarshini RI, Pratap V. Int. J. Pharmacol. Pharm. Sci. 2015; 7: 243
    • 1c Pokhodylo N, Shyyka Q, Finiuk N, Stoika R. Ukr. Biochem. J. 2020; 92: 23
    • 1d Lee S.-H, Kim N, Kim S.-J, Song J, Gong Y.-D, Kim S.-U. J. Cancer Res. Clin. Oncol. 2013; 139: 1279
    • 1e Gobouri AA. Russ. J. Bioorg. Chem. 2020; 46: 409
    • 1f Abu-Hashem AA. Am. J. Org. Chem. 2015; 5: 14
    • 1g Suzuki F, Kuroda T, Nakasato Y, Manabe H, Ohmori K, Kitamura S, Ichikawa S, Ohno T. J. Med. Chem. 1992; 35: 4045
    • 1h Alvarez R, Velázquez S, San-Félix A, Aquaro S, De Clercq E, Karlsson A, Balzarini J, Camarasa MJ. J. Med. Chem. 1994; 37: 4185
    • 2a Biagi G, Giorgi I, Livi O, Scartoni V, Betti L, Giannaccini G, Trincavelli ML. Eur. J. Med. Chem. 2002; 37: 565
    • 2b Majumdar KC, Ganai S. Synthesis 2013; 45: 2619
    • 2c Bertelli G, Biagi G, Giorgi I, Manera C, Livi O, Scartoni V, Betti L, Giannaccini G, Trincavelli L, Barili PL. Eur. J. Med. Chem. 1998; 33: 113
    • 3a Ma X, Zhang X, Qiu W, Zhang W, Wan B, Evans J, Zhang W. Molecules 2019, 24, 601.
    • 3b Jin R.-Z, Zhang Y, Li Y.-L, Wang X.-S. Polycycl. Aromat. Compd. 2016; 36: 671
    • 3c Sahoo S, Veliyath SK, Mahendra Kumar CB. Int. J. Res. Pharm. Sci (Madurai, Ind.) 2012; 3: 326
    • 3d Majumdar KC, Ray K. Synthesis 2011; 3767
    • 3e Saha B, Sharma S, Sawant D, Kundu B. Tetrahedron 2008; 64: 8676
    • 3f Chen Z, Zhu J, Xie H, Li S, Wu Y. Adv. Synth. Catal. 2010; 352: 1296
    • 3g Nandwana NK, Shinde VN, Saini HK, Kumar A. Eur. J. Org. Chem. 2017; 6445

      For reviews on CuAAC reactions and their applications, see:
    • 4a Wang C, Ikhlef D, Kahlal S, Saillard J.-Y, Astruc D. Coord. Chem. Rev. 2016; 316: 1
    • 4b Singh MS, Chowdhury S, Koley S. Tetrahedron 2016; 72: 5257
    • 4c Liu X, Manzur C, Novoa N, Celedón S, Carrillo D, Hamon J.-R. Coord. Chem. Rev. 2018; 357: 144
    • 4d Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
    • 4e Liang L, Astruc D. Coord. Chem. Rev. 2011; 255: 2933

      For reviews on copper-catalyzed Ullmann-type coupling reactions, see:
    • 5a Cristau H.-J, Cellier PP, Spindler J.-F, Taillefer M. Chem. Eur. J. 2004; 10: 5607
    • 5b Xu W, Jin Y, Liu H, Jiang Y, Fu H. Org. Lett. 2011; 13: 1274
    • 5c Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
    • 5d Li Y, Peng J, Chen X, Mo B, Li X, Sun P, Chen C. J. Org. Chem. 2018; 83: 5288

      For examples of combinations of CuAAC and Ullmann-type coupling, see:
    • 6a Pericheria K, Jha A, Khungar B, Kumar A. Org. Lett. 2013; 15: 4304
    • 6b Yan J, Zhou F, Qin D, Cai T, Ding K, Cai Q. Org. Lett. 2012; 14: 1262
    • 6c Cai Q, Yan J, Ding K. Org. Lett. 2012; 14: 3332
    • 6d Jin H, Liu D, Zhou B, Liu Y. Synthesis 2020; 52: 1417
    • 6e see also ref. 3g.
  • 8 Black DA, Arndtsen BA. Org. Lett. 2004; 6: 1107 ; for characterization data for the starting materials, see the Supporting Information
  • 9 [1,2,3]Triazolo[1,5-a]quinoxalines 2am; General Procedure The appropriate N-propargyl-N-(2-iodoaryl)amide 1 (0.5 mmol), NaN3 (0.6 mmol), CuI (0.05 mmol), N,N′-dimethylethylenediamine (0.1 mmol), i-Pr2NEt (0.5 mmol), and DMF (4 mL) were added to a Schlenk tube at r.t. under N2, and the mixture was stirred at 50 °C until the reaction was complete (TLC). The solvent was then evaporated under reduced pressure, and sat. aq NH4Cl was added. The aqueous layer was extracted with CH2Cl2 (3 × 20 mL), and the extracts were dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified with flash chromatography [silica gel, PE–EtOAc (20:1)]. 8-Methyl-3,4-diphenyl-[1,2,3]triazolo[1,5-a]quinoxaline (2a) White solid; yield: 145 mg (86%); mp 193−195 °C. 1H NMR (500 MHz, CDCl3): δ = 8.61 (s, 1 H), 8.11 (d, J = 8.3 Hz, 1 H), 7.58 (dd, J 1 = 8.3, J 2 = 1.5 Hz, 1 H), 7.46−7.44 (m, 2 H), 7.37−7.34 (m, 1 H), 7.29−7.26 (m, 1 H), 7.24−7.16 (m, 6 H), 2.69 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 152.88, 143.72, 141.00, 136.27, 134.77, 130.46, 130.40, 129.93, 129.88, 129.64, 129.01, 128.24, 128.10, 127.79, 125.04, 122.67, 115.32, 21.99. HRMS-ESI; m/z [M + H]+ calcd for C22H17N4: 337.1448; found: 337.1452.
  • 10 Li D, Mao T, Huang J, Zhu Q. Chem. Commun. 2017; 53: 1305