Synlett 2019; 30(10): 1111-1124
DOI: 10.1055/s-0037-1611739
account
© Georg Thieme Verlag Stuttgart · New York

Thiadiazoloquinoxalines

Ben-Lin Hu
,
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany   Email: martin.baumgarten@mpip-mainz.mpg.de
› Author Affiliations
We thank the Deutsche Forschungsgemeinschaft (8DFG) and SFB-TR49 for financial support. Ben-Lin Hu gratefully acknowledges the Alexander von Humboldt Stiftung for granting a research fellowship.
Further Information

Publication History

Received: 08 January 2019

Accepted after revision: 29 January 2019

Publication Date:
12 March 2019 (online)


Abstract

In this account we summarized our work on the modification and extension of the thiadiazoloquinoxaline (TQ) as a strong acceptor unit for organic electronics. While also alternating conjugated copolymers with different donors were published, the focus here is the description of variation of the acceptor unit leading to many small molecules with different electronic properties as indicated from their optical absorptions, cyclic voltammetry (CV) data, density functional theory (DFT), and time-dependent (TD-DFT) calculations. The extension with ortho-diquinones seemed a promising way to enlarge the TQ molecules and further increase their electron affinity. At the end it is demonstrated how these units can be merged with other acceptors like naphthalenediimide (NDI) and be extended in an iterative way to extremely long condensed pyrene-fused heteroacenes with TQ end groups just by ring opening of the thiadiazole five-membered ring followed by further condensations in an iterative way.

1 Introduction

2 The Synthesis of TQ Cores

3 The Extension of TQ

3.1 The Extension at 4,9-Positions

3.2 The Extension at 6,7-Positions

3.3 The Extension on NDI

3.4 The Extension with TQ for Endcapping (Bis TQ)

4 Conclusions

 
  • References

  • 1 Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ. J. Chem. Soc., Chem. Commun. 1977; 578
    • 2a Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG. Phys. Rev. Lett. 1977; 39: 1098
    • 2b Basescu N, Liu ZX, Moses D, Heeger AJ, Naarmann H, Theophilou N. Nature 1987; 327: 403
    • 2c Chiang CK, Gau SC, Fincher CR. Jr, Park YW, MacDiarmid AG, Heeger AJ. Appl. Phys. Lett. 1978; 33: 18
  • 3 Heeger AJ. Rev. Mod. Phys. 2001; 73: 681
    • 4a Burroughes JH, Bradley DD. C, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB. Nature 1990; 347: 539
    • 4b Tang CW, VanSlyke SA. Appl. Phys. Lett. 1987; 51: 913
    • 5a Terje A, Skotheim JR. Conjugated Polymers: Theory, Synthesis, Properties, and Characterization . CRC Press; Boca Raton, FL: 2006
    • 5b Terje A, Skotheim TA. S, Reynolds J. Conjugated Polymers: Processing and Applications, 3rd ed. CRC Press; Boca Raton FL: 2006
    • 6a Loewe RS, Khersonsky SM, McCullough RD. Adv. Mater. 1999; 11: 250
    • 6b Chen TA, O'Brien RA, Rieke RD. Macromolecules 1993; 26: 3462
    • 6c Chen TA, Rieke RD. J. Am. Chem. Soc. 1992; 114: 10087
    • 6d McCullough RD, Lowe RD. J. Chem. Soc., Chem. Commun. 1992; 70
    • 7a Inganäs O, Zhang F, Tvingstedt K, Andersson LM, Hellström S, Andersson MR. Adv. Mater. 2010; 22: E100
    • 7b Facchetti A. Chem. Mater. 2011; 23: 733
  • 8 Guo X, Baumgarten M, Müllen K. Prog. Polym. Sci. 2013; 38: 1832
  • 9 Mühlbacher D, Scharber M, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec C. Adv. Mater. 2006; 18: 2884
  • 10 Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC. Nat. Mater. 2007; 6: 497
  • 11 Zhang M, Tsao HN, Pisula W, Yang C, Mishra AK, Müllen K. J. Am. Chem. Soc. 2007; 129: 3472
  • 12 Kitamura C, Tanaka S, Yamashita Y. Chem. Mater. 1996; 8: 570
  • 13 Wang X, Perzon E, Delgado JL, Cruz PD. L, Zhang F, Langa F, Andersson M, Inganäs O. Appl. Phys. Lett. 2004; 85: 5081
    • 14a Chen M, Crispin X, Perzon E, Andersson MR, Pullerits T, Andersson M, Inganäs O, Berggren M. Appl. Phys. Lett. 2005; 87: 252105
    • 14b Wang X, Perzon E, Oswald F, Langa F, Admassie S, Andersson MR, Inganäs O. Adv. Funct. Mater. 2005; 15: 1665
    • 14c Admassie S, Inganäs O, Mammo W, Perzon E, Andersson MR. Synth. Met. 2006; 156: 614
    • 14d Wang X, Perzon E, Mammo W, Oswald F, Admassie S, Persson N.-K, Langa F, Andersson MR, Inganäs O. Thin Solid Films 2006; 511: 576
    • 14e Perzon E, Zhang F, Andersson M, Mammo W, Inganäs O, Andersson MR. Adv. Mater. 2007; 19: 3308
    • 15a Li H, Tam TL, Lam YM, Mhaisalkar SG, Grimsdale AC. Org. Lett. 2011; 13: 46
    • 15b Tam TL, Li H, Lam YM, Mhaisalkar SG, Grimsdale AC. Org. Lett. 2011; 13: 4612
  • 16 Mishra A, Ma C.-Q, Bäuerle P. Chem. Rev. 2009; 109: 1141
    • 17a Huang J, Niu Y, Yang W, Mo Y, Yuan M, Cao Y. Macromolecules 2002; 35: 6080
    • 17b Dominguez Z, Khuong T.-AV, Dang H, Sanrame CN, Nuñez JE, Garcia-Garibay MA. J. Am. Chem. Soc. 2003; 125: 8827
  • 18 Heiskanen JP, Vivo P, Saari NM, Hukka TI, Kastinen T, Kaunisto K, Lemmetyinen HJ, Hormi OE. O. J. Org. Chem. 2016; 81: 1535
    • 19a Wang E, Hou L, Wang Z, Hellström S, Mammo W, Zhang F, Inganäs O, Andersson MR. Org. Lett. 2010; 12: 4470
    • 19b Carsten B, Szarko JM, Lu L, Son HJ, He F, Botros YY, Chen LX, Yu L. Macromolecules 2012; 45: 6390
    • 20a Sun XX, Zhuang XX, Ren YL. Adv. Mater. Res. 2012; 482: 1221
    • 20b Hu B, Wang C, Zhang J, Qian K, Lee PS, Zhang Q. RSC Adv. 2015; 5: 77122
    • 20c Hassan Omar O, la Gatta S, Tangorra RR, Milano F, Ragni R, Operamolla A, Argazzi R, Chiorboli C, Agostiano A, Trotta M, Farinola GM. Bioconjugate Chem. 2016; 27: 1614
    • 20d Hu B, Li M, Chen W, Wan X, Chen Y, Zhang Q. RSC Adv. 2015; 5: 50137
  • 21 Gamble AB, Garner J, Gordon CP, O'Conner SM. J, Keller PA. Synth. Commun. 2007; 37: 2777
  • 22 Pitts MR, Harrison JR, Moody CJ. J. Chem. Soc., Perkin Trans. 1 2001; 0: 955
  • 23 Lee H.-Y, An M. Bull. Korean Chem. Soc. 2004; 24: 1717
  • 24 Friedel C, Crafts JM. Compt. Rend. 1877; 84: 1392
    • 25a Belen'kii LI. Chem. Heterocycl. Compd. 1980; 16: 1195
    • 25b Belen'kii LI, Shirinyan VZ, Gromova GP, Kolotaev AV, Strelenko YA, Tandura SN, Shumskii AN, Krayushkin MM. Chem. Heterocycl. Compd. 2003; 39: 1570
    • 26a Karsten BP, Janssen RA. J. Org. Lett. 2008; 10: 3513
    • 26b Karsten BP, Viani L, Gierschner J, Cornil J, Janssen RA. J. J. Phys. Chem. A 2008; 112: 10764
  • 27 Dallos T, Hamburger M, Baumgarten M. Org. Lett. 2011; 13: 1936
  • 28 Stelzig T. PhD Thesis. Johannes Gutenberg-University; Mainz: 2012
  • 29 An C, Puniredd SR, Guo X, Stelzig T, Zhao Y, Pisula W, Baumgarten M. Macromolecules 2014; 47: 979
  • 30 An C, Zhou S, Baumgarten M. Cryst. Growth Des. 2015; 15: 1934
    • 31a Zhou S, An C, Stelzig T, Puniredd SR, Guo X, Pisula W, Baumgarten M. New J. Chem. 2015; 39: 6765
    • 31b Roy X, Chong JH, Patrick BO, MacLachlan MJ. Cryst. Growth Des. 2011; 11: 4551
    • 31c Li M, An C, Marszalek T, Guo X, Long Y.-Z, Yin H, Gu C, Baumgarten M, Pisula W, Müllen K. Chem. Mater. 2015; 27: 2218
  • 32 An C, Guo X, Baumgarten M. Cryst. Growth Des. 2015; 15: 5240
  • 33 CCDC 1888359 contains the supplementary crystallographic data for compound 52. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures
  • 34 Anthony JE, Brooks JS, Eaton DL, Parkin SR. J. Am. Chem. Soc. 2001; 123: 9482
    • 35a Katz HE, Johnson J, Lovinger AJ, Li W. J. Am. Chem. Soc. 2000; 122: 7787
    • 35b Bhosale SV, Jani CH, Langford SJ. Chem. Soc. Rev. 2008; 37: 331
    • 35c Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A. Nature 2009; 457: 679
  • 36 Shukla D, Nelson SF, Freeman DC, Rajeswaran M, Ahearn WG, Meyer DM, Carey JT. Chem. Mater. 2008; 20: 7486
    • 37a Chang J, Ye Q, Huang K.-W, Zhang J, Chen Z.-K, Wu J, Chi C. Org. Lett. 2012; 14: 2964
    • 37b Hu Y, Wang Z, Zhang X, Yang X, Ge C, Fu L, Gao X. Org. Lett. 2017; 19: 468
    • 37c Ye Q, Chang J, Huang K.-W, Shi X, Wu J, Chi C. Org. Lett. 2013; 15: 1194
    • 37d Endres AH, Schaffroth M, Paulus F, Reiss H, Wadepohl H, Rominger F, Krämer R, Bunz UH. F. J. Am. Chem. Soc. 2016; 138: 1792
    • 37e Yuan Z, Ma Y, Geßner T, Li M, Chen L, Eustachi M, Weitz RT, Li C, Müllen K. Org. Lett. 2016; 18: 456
    • 37f Hu Y, Gao X, Di CA, Yang X, Zhang F, Liu Y, Li H, Zhu D. Chem. Mater. 2011; 23: 1204
    • 37g Cai K, Yan Q, Zhao D. Chem. Sci. 2012; 3: 3175
  • 38 Hu B.-L, Zhang K, An C, Pisula W, Baumgarten M. Org. Lett. 2017; 19: 6300
    • 39a Wang C, Zhang J, Long G, Aratani N, Yamada H, Zhao Y, Zhang Q. Angew. Chem. Int. Ed. 2015; 54: 6292
    • 39b Gu P.-Y, Wang Z, Zhang Q. J. Mater. Chem. B 2016; 4: 7060
    • 39c Bunz UH. F. Acc. Chem. Res. 2015; 48: 1676
    • 39d Mateo-Alonso A. Chem. Soc. Rev. 2014; 43: 6311
    • 40a Xia D, Guo X, Chen L, Baumgarten M, Keerthi A, Müllen K. Angew. Chem. Int. Ed. 2016; 55: 941
    • 40b Engelhart JU, Tverskoy O, Bunz UH. F. J. Am. Chem. Soc. 2014; 136: 15166
  • 41 Hu B.-L, Zhang K, An C, Schollmeyer D, Pisula W, Baumgarten M. Angew. Chem. Int. Ed. 2018; 57: 12375