Synlett 2019; 30(08): 910-918
DOI: 10.1055/s-0037-1611783
letter
© Georg Thieme Verlag Stuttgart · New York

General and Greener Synthesis of Diverse Functional Organic Salts through Schiff Base Chemistry

Baoping Hu
a   School of Materials Science and Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: lishenghua@bit.edu.cn   Email: pangsp@bit.edu.cn
,
Qingrong Shi
a   School of Materials Science and Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: lishenghua@bit.edu.cn   Email: pangsp@bit.edu.cn
,
Feipeng Lu
a   School of Materials Science and Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: lishenghua@bit.edu.cn   Email: pangsp@bit.edu.cn
,
Pengcheng Zhang
a   School of Materials Science and Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: lishenghua@bit.edu.cn   Email: pangsp@bit.edu.cn
,
Panpan Peng
a   School of Materials Science and Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: lishenghua@bit.edu.cn   Email: pangsp@bit.edu.cn
,
Chaofeng Zhao
a   School of Materials Science and Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: lishenghua@bit.edu.cn   Email: pangsp@bit.edu.cn
,
Yao Du
a   School of Materials Science and Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: lishenghua@bit.edu.cn   Email: pangsp@bit.edu.cn
,
Hui Su
a   School of Materials Science and Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: lishenghua@bit.edu.cn   Email: pangsp@bit.edu.cn
,
Shenghua Li*
a   School of Materials Science and Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: lishenghua@bit.edu.cn   Email: pangsp@bit.edu.cn
,
Siping Pang*
a   School of Materials Science and Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: lishenghua@bit.edu.cn   Email: pangsp@bit.edu.cn
,
Fudie Nie
b   Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621900, P. R. of China
› Author Affiliations
The authors acknowledge financial support from NSAF (U1530262), the National Natural Science Foundation of China (21875021 and 21576026), and the Fundamental Research Funds for the Central Universities.
Further Information

Publication History

Received: 20 February 2019

Accepted after revision: 14 March 2019

Publication Date:
16 April 2019 (online)


Abstract

We report a greener and more-general organic method for the synthesis of functional organic salts containing organic anions through a Schiff base reaction between readily available aldehydes and simple aminoguanidinium salts. This reaction is operationally simple, free of metal salts, and forms water as the sole byproduct. The broad scope and good functional-group compatibility of this method permit its use to provide ready access to a library of more than 70 distinct organic salts, including those of heterocyclic anions, complex pharmaceutical anions, and polyanions, which are difficult to obtain through classical inorganic methods. Moreover, choosing different aldehydes and organic anions provides a convenient method for modulating or improving the functional properties of the designed organic salts, such as their melting points, fluorescence, and energetic properties. We therefore expect that this method will open new opportunities for the discovery and functionalization of a wide variety of organic salts and functional materials.

Supporting Information

 
  • References and Notes

  • 1 Avila CM, Patel JS, Reddi Y, Saito M, Nelson HM, Sigman MS, Sunoj RB, Sunoj FD, Toste FD. Angew. Chem. Int. Ed. 2017; 56: 5806
  • 2 Zheng D, Yu J, Wu J. Angew. Chem. Int. Ed. 2016; 55: 11925
  • 3 Pawar SK, Yang M.-C, Su M.-D, Liu R.-S. Angew. Chem. Int. Ed. 2017; 56: 5035
  • 4 Yin J, Tan M, Wu D, Jiang R, Li C, You J. Angew. Chem. Int. Ed. 2017; 56: 13094
  • 5 Xing G, Yan T, Das S, Ben T, Qiu S. Angew. Chem. Int. Ed. 2018; 57: 5345
  • 6 Liu M, Chen L, Lewis S, Chong SY, Little MA, Hasell T, Aldous IM, Brown CM, Smith WM, Morrison CA, Hardwick LJ, Cooper AI. Nat. Commun. 2016; 7: 12750
  • 7 Itoh T. Chem. Rev. 2017; 117: 10567
  • 8 Qiao Y, Ma W, Theyssen N, Chen C, Hou Z. Chem. Rev. 2017; 117: 6881
  • 9 Magut PK. S, Das S, Fernand VE, Losso J, McDonough KB, Naylor BM, Aggarwal S, Warner IM. J. Am. Chem. Soc. 2013; 135: 15873
  • 10 Li Z, Liu Y, Kim H, Hales JM, Jang S.-H, Luo J, Baehr-Jones T, Hochberg M, Marder SR, Perry J, Jen AK.-Y. Adv. Mater. (Weinheim, Ger.) 2012; 24: OP326
  • 11 Egorova KS, Gordeev EG, Ananikov VP. Chem. Rev. 2017; 117: 7132
  • 12 Zhang C, Sun C, Hu B, Lu C, Yu M. Science 2017; 355: 374
  • 13 Gao H, Shreeve JM. Chem. Rev. 2011; 111: 7377
  • 14 Zhang Q, Shreeve JM. Chem. Rev. 2014; 114: 10527
  • 15 Amarasekara AS. Chem. Rev. 2016; 116: 6133
  • 16 Yin P, Zhang J, Imler GH, Parrish DA, Shreeve JM. Angew. Chem. Int. Ed. 2017; 56: 8834
  • 17 Tang Y, Mitchell LA, Imler GH, Parrish DA, Shreeve JM. Angew. Chem. Int. Ed. 2017; 56: 5894
  • 18 Xu Z, Cheng G, Yang H, Ju X, Yin P, Zhang J, Shreeve JM. Angew. Chem. Int. Ed. 2017; 56: 5877
  • 19 Fischer D, Gottfied JL, Klapötke TM, Karaghiosoff K, Stierstorfer J, Witkowski DT. G. Angew. Chem. Int. Ed. 2016; 55: 16132
  • 20 Zhao G, He C, Yin P, Imler GH, Parrish DA, Shreeve JM. J. Am. Chem. Soc. 2018; 140: 3560
  • 21 Fischer D, Klapötke TM, Stierstorfer J. Angew. Chem. Int. Ed. 2015; 54: 10299
  • 22 Tao D.-J, Chen F.-F, Tian Z.-Q, Huang K, Mahurin SM, Jiang D.-e, Dai S. Angew. Chem. Int. Ed. 2017; 56: 6843
  • 23 Wang C, Cui G, Luo X, Xu Y, Li H, Dai S. J. Am. Chem. Soc. 2011; 133: 11916
  • 24 Chen K, Shi G, Zhou X, Li H, Wang C. Angew. Chem. Int. Ed. 2016; 55: 14364
  • 25 Schiff H. Justus Liebigs Ann. Chem. 1864; 131: 118
  • 26 Das S, Heasman P, Ben T, Qiu S. Chem. Rev. 2017; 117: 1515
  • 27 Chu S, Münster N, Balan T, Smith MD. Angew. Chem. Int. Ed. 2016; 55: 14306
  • 28 Jiao T, Chen L, Yang D, Li X, Wu G, Zeng P, Zhou A, Yin Q, Pan Y, Wu B, Hong X, Kong X, Lynch VM, Sessler JL, Li H. Angew. Chem. Int. Ed. 2017; 56: 14545
  • 29 Peng W, Paulson JC. J. Am. Chem. Soc. 2017; 139: 12450
  • 30 Rizzuto FJ, Wood DM, Ronson TK, Nitschkte JR. J. Am. Chem. Soc. 2017; 139: 11008
  • 31 Tamura T, Song Z, Amaike K, Lee S, Yin S, Kiyonaka S, Hamachi I. J. Am. Chem. Soc. 2017; 139: 14181
  • 32 Seipp CA, Williams NJ, Kidder MK, Custelcean R. Angew. Chem. Int. Ed. 2017; 56: 1042
  • 33 Kocsis I, Rotaru A, Legrand Y.-M, Grosu I, Barboiu M. Chem. Commun. 2016; 52: 386
  • 34 Dippold A, Klapötke T. Chem. Eur. J. 2012; 18: 16742
  • 35 Takai A, Takashi K, Takanori F, Keiki K, Takeshi Y, Masayuki T. J. Am. Chem. Soc. 2016; 138: 11245
  • 36 Wang Y, Qi W, Huang R, Yang X, Wang M, Su R, He Z. J. Am. Chem. Soc. 2015; 137: 7869
  • 37 Tanushi A, Kusamoto T, Hattori Y, Takada K, Nishihara H. J. Am. Chem. Soc. 2015; 137: 6448
  • 38 CCDC 1854699, 1854698, 1854702, 1854701, 1854704, 1854700, and 1854703 contain the supplementary crystallographic data for compounds 4, 24, 39, 46, 58, 70, and 72, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 39 Schlesinger C, Tapmeyer L, Gumbert SD, Prill D, Bolte M, Schmidt MU, Saal C. Angew. Chem. Int. Ed. 2018; 57: 9150
  • 40 Toriumi N, Asano N, Miyamoto K, Muranaka A, Uchiyama M. J. Am. Chem. Soc. 2018; 140: 3858
  • 41 Ma Q, Chen Y, Liao L, Lu H, Fan G, Hunag J. Dalton Trans. 2017; 46: 7467
  • 42 Klapötke TM. Schmid P. C, Schnell S, Stierstorfer J. Chem. Eur. J. 2015; 21: 9219
  • 43 Amino(2-benzylidenehydrazino)methaniminium 3,5-Dinitropyrazolide (4); Typical Procedure A 50 mL round-bottomed flask was charged with PhCHO (0.106 g, 1 mmol) and EtOH (6 mL) A solution of aminoguanidinium 3,5-dinitropyrazolide (0.232 g, 1 mmol) in EtOH (20 mL) was added dropwise to the flask and the resulting mixture was stirred for 7 h at 65 °C. The solvent was then slowly removed under a vacuum, and the residue was crystallized from H2O to give light-yellow needle crystals; yield: 0.294 g (92%); mp 174.32–174.96 °C. IR (KBr): 759, 834, 1010, 1318, 1351, 486, 541, 1622, 1670, 3255 cm–1. 1H NMR (600 MHz, DMSO-d 6): δ = 7.35 (s, 1 H, CH), 7.45 (s, 3 H, NH), 7.72 (t, J = 7.5 Hz, 3 H, CH), 7.87 (m, 2 H, CH), 8.22 (s, 1 H, CH,), 11.59 (s, 1 H, NH). 13C NMR (150 MHz, DMSO-d 6): δ = 98.89 (s), 128.07 (s,), 129.13 (s), 130.98 (s), 133.85 (s), 147.75 (s), 155.57 (s), 156.81 (s). MS (ESI-MS): m/z = 163.05 (C8H11N4 +, cation); 156.95 (C3HN4O4 , anion). Anal. Calcd: C 42.25, N 34.99, H 3.78. Found: C 42.82, N 34.52, H 3.96.