Am J Perinatol 2018; 35(09): 823-836
DOI: 10.1055/s-0037-1618603
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Antenatal Medical Therapies to Improve Lung Development in Congenital Diaphragmatic Hernia

Aidan Kashyap
1   The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
2   Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
,
Philip DeKoninck
1   The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
2   Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
,
Kelly Crossley
1   The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
2   Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
,
Marta Thio
3   Newborn Research Centre, The Royal Women's Hospital, Melbourne, Australia
4   Centre of Research Excellence in Newborn Medicine, Murdoch Children's Research Institute, Melbourne, Australia
5   Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
6   PIPER – Neonatal Retrieval Services Victoria, The Royal Children's Hospital, Melbourne, Australia
,
Graeme Polglase
1   The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
2   Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
,
Francesca Maria Russo
7   Division of Woman and Child, Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
8   Department of Development and Regeneration, Cluster Woman and Child, Faculty of Medicine, KU Leuven, Belgium
,
Jan Deprest
7   Division of Woman and Child, Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
8   Department of Development and Regeneration, Cluster Woman and Child, Faculty of Medicine, KU Leuven, Belgium
9   Institute for Women's Health, University College London Hospital, London, United Kingdom
,
Stuart Hooper
1   The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
2   Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
,
Ryan Hodges
1   The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
2   Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
10   Monash Women's Service, Monash Health, Melbourne, Australia
› Author Affiliations
Further Information

Publication History

10 July 2017

05 December 2017

Publication Date:
16 January 2018 (online)

Abstract

Congenital diaphragmatic hernia (CDH) is a birth defect characterized by failed closure of the diaphragm, allowing abdominal viscera to herniate into the thoracic cavity and subsequently impair pulmonary and vascular development. Despite improving standardized postnatal management, there remains a population of severe CDH for whom postnatal care falls short. In these severe cases, antenatal surgical intervention (fetoscopic endoluminal tracheal occlusion [FETO]) may improve survival; however, FETO increases the risk of preterm delivery, is not widely offered, and still fails in half of cases. Antenatal medical therapies that stimulate antenatal pulmonary development are therefore interesting alternatives. By presenting the animal research underpinning novel antenatal medical therapies for CDH, and considering the applications of these therapies to clinical practice, this review will explore the future of antenatal CDH management with a focus on the phosphodiesterase-5 inhibitor sildenafil.

 
  • References

  • 1 Kotecha S, Barbato A, Bush A. , et al. Congenital diaphragmatic hernia. Eur Respir J 2012; 39 (04) 820-829
  • 2 Harding R, Hooper SB. Regulation of lung expansion and lung growth before birth. J Appl Physiol (1985) 1996; 81 (01) 209-224
  • 3 Moessinger AC, Harding R, Adamson TM, Singh M, Kiu GT. Role of lung fluid volume in growth and maturation of the fetal sheep lung. J Clin Invest 1990; 86 (04) 1270-1277
  • 4 Harding R, Hooper SB, Han VK. Abolition of fetal breathing movements by spinal cord transection leads to reductions in fetal lung liquid volume, lung growth, and IGF-II gene expression. Pediatr Res 1993; 34 (02) 148-153
  • 5 Miller AA, Hooper SB, Harding R. Role of fetal breathing movements in control of fetal lung distension. J Appl Physiol (1985) 1993; 75 (06) 2711-2717
  • 6 Stenmark KR, Abman SH. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol 2005; 67: 623-661
  • 7 Keller RL. Antenatal and postnatal lung and vascular anatomic and functional studies in congenital diaphragmatic hernia: implications for clinical management. Am J Med Genet C Semin Med Genet 2007; 145C (02) 184-200
  • 8 Dillon PW, Cilley RE, Mauger D, Zachary C, Meier A. The relationship of pulmonary artery pressure and survival in congenital diaphragmatic hernia. J Pediatr Surg 2004; 39 (03) 307-312
  • 9 Snoek KG, Reiss IK, Greenough A. , et al; CDH EURO Consortium. Standardized Postnatal Management of Infants with Congenital Diaphragmatic Hernia in Europe: The CDH EURO Consortium Consensus - 2015 Update. Neonatology 2016; 110 (01) 66-74
  • 10 Wynn J, Krishnan U, Aspelund G. , et al. Outcomes of congenital diaphragmatic hernia in the modern era of management. J Pediatr 2013; 163 (01) 114-9.e1
  • 11 Danzer E, Hedrick HL. Controversies in the management of severe congenital diaphragmatic hernia. Semin Fetal Neonatal Med 2014; 19 (06) 376-384
  • 12 Jani JC, Nicolaides KH, Gratacós E. , et al. Severe diaphragmatic hernia treated by fetal endoscopic tracheal occlusion. Ultrasound Obstet Gynecol 2009; 34 (03) 304-310
  • 13 Pereira-Terra P, Deprest JA, Kholdebarin R. , et al. Unique tracheal fluid microRNA signature predicts response to FETO in patients with congenital diaphragmatic hernia. Ann Surg 2015; 262 (06) 1130-1140
  • 14 Eastwood MP, Russo FM, Toelen J, Deprest J. Medical interventions to reverse pulmonary hypoplasia in the animal model of congenital diaphragmatic hernia: a systematic review. Pediatr Pulmonol 2015; 50 (08) 820-838
  • 15 Greer JJ. Current concepts on the pathogenesis and etiology of congenital diaphragmatic hernia. Respir Physiol Neurobiol 2013; 189 (02) 232-240
  • 16 Puri P, Wester T. Historical aspects of congenital diaphragmatic hernia. Pediatr Surg Int 1997; 12 (02) 95-100
  • 17 Keijzer R, Liu J, Deimling J, Tibboel D, Post M. Dual-hit hypothesis explains pulmonary hypoplasia in the nitrofen model of congenital diaphragmatic hernia. Am J Pathol 2000; 156 (04) 1299-1306
  • 18 Zussman ME, Bagby M, Benson DW, Gupta R, Hirsch R. Pulmonary vascular resistance in repaired congenital diaphragmatic hernia vs. age-matched controls. Pediatr Res 2012; 71 (06) 697-700
  • 19 Flemmer AW, Thio M, Wallace MJ. , et al. Lung hypoplasia in newborn rabbits with a diaphragmatic hernia affects pulmonary ventilation but not perfusion. Pediatr Res 2017; 82 (03) 536-543
  • 20 Hooper SB, Polglase GR, te Pas AB. A physiological approach to the timing of umbilical cord clamping at birth. Arch Dis Child Fetal Neonatal Ed 2015; 100 (04) F355-F360
  • 21 Mohseni-Bod H, Bohn D. Pulmonary hypertension in congenital diaphragmatic hernia. Semin Pediatr Surg 2007; 16 (02) 126-133
  • 22 Geggel RL, Murphy JD, Langleben D, Crone RK, Vacanti JP, Reid LM. Congenital diaphragmatic hernia: arterial structural changes and persistent pulmonary hypertension after surgical repair. J Pediatr 1985; 107 (03) 457-464
  • 23 Carmel JA, Friedman F, Adams FH. Fetal tracheal ligation and lung development. Am J Dis Child 1965; 109: 452-456
  • 24 Flake AW, Crombleholme TM, Johnson MP, Howell LJ, Adzick NS. Treatment of severe congenital diaphragmatic hernia by fetal tracheal occlusion: clinical experience with fifteen cases. Am J Obstet Gynecol 2000; 183 (05) 1059-1066
  • 25 Deprest J, Gratacos E, Nicolaides KH. ; FETO Task Group. Fetoscopic tracheal occlusion (FETO) for severe congenital diaphragmatic hernia: evolution of a technique and preliminary results. Ultrasound Obstet Gynecol 2004; 24 (02) 121-126
  • 26 Harrison MR, Keller RL, Hawgood SB. , et al. A randomized trial of fetal endoscopic tracheal occlusion for severe fetal congenital diaphragmatic hernia. N Engl J Med 2003; 349 (20) 1916-1924
  • 27 Deprest JA, Nicolaides K, Gratacos E. Fetal surgery for congenital diaphragmatic hernia is back from never gone. Fetal Diagn Ther 2011; 29 (01) 6-17
  • 28 Al-Maary J, Eastwood MP, Russo FM, Deprest JA, Keijzer R. Fetal tracheal occlusion for severe pulmonary hypoplasia in isolated congenital diaphragmatic hernia: a systematic review and meta-analysis of survival. Ann Surg 2016; 264 (06) 929-933
  • 29 Dekoninck P, Gratacos E, Van Mieghem T. , et al. Results of fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia and the set up of the randomized controlled TOTAL trial. Early Hum Dev 2011; 87 (09) 619-624
  • 30 Deprest J, Brady P, Nicolaides K. , et al. Prenatal management of the fetus with isolated congenital diaphragmatic hernia in the era of the TOTAL trial. Semin Fetal Neonatal Med 2014; 19 (06) 338-348
  • 31 Flageole H, Evrard VA, Piedboeuf B, Laberge J-M, Lerut TE, Deprest JA. The plug-unplug sequence: an important step to achieve type II pneumocyte maturation in the fetal lamb model. J Pediatr Surg 1998; 33 (02) 299-303
  • 32 Flecknoe SJ, Wallace MJ, Harding R, Hooper SB. Determination of alveolar epithelial cell phenotypes in fetal sheep: evidence for the involvement of basal lung expansion. J Physiol 2002; 542 (Pt 1): 245-253
  • 33 Lines A, Gillett AM, Phillips ID, Wallace MJ, Hooper SB. Re-expression of pulmonary surfactant proteins following tracheal obstruction in fetal sheep. Exp Physiol 2001; 86 (01) 55-63
  • 34 Deprest J, Nicolaides K, Done' E. , et al. Technical aspects of fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia. J Pediatr Surg 2011; 46 (01) 22-32
  • 35 Jiménez JA, Eixarch E, DeKoninck P. , et al. Balloon removal after fetoscopic endoluminal tracheal occlusion for congenital diaphragmatic hernia. Am J Obstet Gynecol 2017; 217 (01) 78.e1-78.e11
  • 36 Wegrzyn P, Weigl W, Szymusik I. , et al. Premature labor after fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia: post-procedure management problems. Ultrasound Obstet Gynecol 2010; 36 (01) 124-125
  • 37 Nardo L, Hooper SB, Harding R. Stimulation of lung growth by tracheal obstruction in fetal sheep: relation to luminal pressure and lung liquid volume. Pediatr Res 1998; 43 (02) 184-190
  • 38 Pederiva F, Ghionzoli M, Pierro A, De Coppi P, Tovar JA. Amniotic fluid stem cells rescue both in vitro and in vivo growth, innervation, and motility in nitrofen-exposed hypoplastic rat lungs through paracrine effects. Cell Transplant 2013; 22 (09) 1683-1694
  • 39 Yuniartha R, Alatas FS, Nagata K. , et al. Therapeutic potential of mesenchymal stem cell transplantation in a nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr Surg Int 2014; 30 (09) 907-914
  • 40 DeKoninck P, Toelen J, Roubliova X. , et al. The use of human amniotic fluid stem cells as an adjunct to promote pulmonary development in a rabbit model for congenital diaphragmatic hernia. Prenat Diagn 2015; 35 (09) 833-840
  • 41 Hodges RJ, Lim R, Jenkin G, Wallace EM. Amnion epithelial cells as a candidate therapy for acute and chronic lung injury. Stem Cells Int 2012; 2012: 709763
  • 42 De Coppi P, Deprest J. Regenerative medicine solutions in congenital diaphragmatic hernia. Semin Pediatr Surg 2017; 26 (03) 171-177
  • 43 Lally KP, Bagolan P, Hosie S. , et al; Congenital Diaphragmatic Hernia Study Group. Corticosteroids for fetuses with congenital diaphragmatic hernia: can we show benefit?. J Pediatr Surg 2006; 41 (04) 668-674 , discussion 668–674
  • 44 Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972; 50 (04) 515-525
  • 45 Ballard PL, Ballard RA. Scientific basis and therapeutic regimens for use of antenatal glucocorticoids. Am J Obstet Gynecol 1995; 173 (01) 254-262
  • 46 Whitsett JA, Matsuzaki Y. Transcriptional regulation of perinatal lung maturation. Pediatr Clin North Am 2006; 53 (05) 873-887
  • 47 Bird AD, Tan KH, Olsson PF. , et al. Identification of glucocorticoid-regulated genes that control cell proliferation during murine respiratory development. J Physiol 2007; 585 (Pt 1): 187-201
  • 48 Cole TJ, Solomon NM, Van Driel R. , et al. Altered epithelial cell proportions in the fetal lung of glucocorticoid receptor null mice. Am J Respir Cell Mol Biol 2004; 30 (05) 613-619
  • 49 Kemp MW, Newnham JP, Challis JG, Jobe AH, Stock SJ. The clinical use of corticosteroids in pregnancy. Hum Reprod Update 2016; 22 (02) 240-259
  • 50 George DK, Cooney TP, Chiu BK, Thurlbeck WM. Hypoplasia and immaturity of the terminal lung unit (acinus) in congenital diaphragmatic hernia. Am Rev Respir Dis 1987; 136 (04) 947-950
  • 51 Suen HC, Bloch KD, Donahoe PK. Antenatal glucocorticoid corrects pulmonary immaturity in experimentally induced congenital diaphragmatic hernia in rats. Pediatr Res 1994; 35 (05) 523-529
  • 52 Schmidt AF, Gonçalves FL, Nassr AC, Pereira LA, Farmer D, Sbragia L. Antenatal steroid and tracheal occlusion restore vascular endothelial growth factor receptors in congenital diaphragmatic hernia rat model. Am J Obstet Gynecol 2010; 203 (02) 184.e13-184.e20
  • 53 Gonçalves FL, Figueira RL, Simões AL. , et al. Effect of corticosteroids and lung ventilation in the VEGF and NO pathways in congenital diaphragmatic hernia in rats. Pediatr Surg Int 2014; 30 (12) 1207-1215
  • 54 Oue T, Shima H, Taira Y, Puri P. Administration of antenatal glucocorticoids upregulates peptide growth factor gene expression in nitrofen-induced congenital diaphragmatic hernia in rats. J Pediatr Surg 2000; 35 (01) 109-112
  • 55 Tannuri U, Rodrigues CJ, Maksoud-Filho JG, Santos MM, Tannuri AC, Rodrigues Jr AJ. The effects of prenatal intraamniotic surfactant or dexamethasone administration on lung development are comparable to changes induced by tracheal ligation in an animal model of congenital diaphragmatic hernia: studies of lung glycogen content, elastic fiber density, and collagen content. J Pediatr Surg 1998; 33 (12) 1776-1783
  • 56 Roubliova XI, Lewi PJ, Verbeken EK. , et al. The effect of maternal betamethasone and fetal tracheal occlusion on pulmonary vascular morphometry in fetal rabbits with surgically induced diaphragmatic hernia: a placebo controlled morphologic study. Prenat Diagn 2009; 29 (07) 674-681
  • 57 Rodrigues CJ, Tannuri U, Tannuri AC, Maksoud-Filho J, Rodrigues Jr AJ. Prenatal tracheal ligation or intra-amniotic administration of surfactant or dexamethasone prevents some structural changes in the pulmonary arteries of surgically created diaphragmatic hernia in rabbits. Rev Hosp Clin Fac Med Sao Paulo 2002; 57 (01) 1-8
  • 58 Hedrick HL, Kaban JM, Pacheco BA. , et al. Prenatal glucocorticoids improve pulmonary morphometrics in fetal sheep with congenital diaphragmatic hernia. J Pediatr Surg 1997; 32 (02) 217-221
  • 59 Schnitzer JJ, Hedrick HL, Pacheco BA. , et al. Prenatal glucocorticoid therapy reverses pulmonary immaturity in congenital diaphragmatic hernia in fetal sheep. Ann Surg 1996; 224 (04) 430-437 , discussion 437–439
  • 60 National Institute of Health. Effect of corticosteroids for fetal maturation on perinatal outcomes. NIH Consens Statement 1994; 12 (02) 1-24
  • 61 Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 2017; 3: CD004454
  • 62 Wapner RJ, Sorokin Y, Mele L. , et al; National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Long-term outcomes after repeat doses of antenatal corticosteroids. N Engl J Med 2007; 357 (12) 1190-1198
  • 63 Mayer S, Klaritsch P, Sbragia L, Toelen J, Till H, Deprest JA. Maternal administration of betamethasone inhibits proliferation induced by fetal tracheal occlusion in the nitrofen rat model for congenital diaphragmatic hernia: a placebo-controlled study. Pediatr Surg Int 2008; 24 (12) 1287-1295
  • 64 Davey MG, Danzer E, Schwarz U. , et al. Prenatal glucocorticoids improve lung morphology and partially restores surfactant mRNA expression in lambs with diaphragmatic hernia undergoing fetal tracheal occlusion. Pediatr Pulmonol 2006; 41 (12) 1188-1196
  • 65 Boland RE, Nardo L, Hooper SB. Cortisol pretreatment enhances the lung growth response to tracheal obstruction in fetal sheep. Am J Physiol 1997; 273 (6 Pt 1): L1126-L1131
  • 66 Sakai M, Unemoto K, Solari V, Puri P. Decreased expression of voltage-gated K+ channels in pulmonary artery smooth muscles cells in nitrofen-induced congenital diaphragmatic hernia in rats. Pediatr Surg Int 2004; 20 (03) 192-196
  • 67 Roubliova XI, Lewi PJ, Vaast P. , et al. Effects of betamethasone on peripheral arterial development in term fetal rabbit. Pediatr Pulmonol 2008; 43 (08) 795-805
  • 68 Coste K, Beurskens LW, Blanc P. , et al. Metabolic disturbances of the vitamin A pathway in human diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2015; 308 (02) L147-L157
  • 69 Montedonico S, Nakazawa N, Puri P. Congenital diaphragmatic hernia and retinoids: searching for an etiology. Pediatr Surg Int 2008; 24 (07) 755-761
  • 70 Wilson JG, Roth CB, Warkany J. An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am J Anat 1953; 92 (02) 189-217
  • 71 Mendelsohn C, Lohnes D, Décimo D. , et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 1994; 120 (10) 2749-2771
  • 72 Major D, Cadenas M, Fournier L, Leclerc S, Lefebvre M, Cloutier R. Retinol status of newborn infants with congenital diaphragmatic hernia. Pediatr Surg Int 1998; 13 (08) 547-549
  • 73 Beurskens LW, Tibboel D, Lindemans J. , et al. Retinol status of newborn infants is associated with congenital diaphragmatic hernia. Pediatrics 2010; 126 (04) 712-720
  • 74 Noble BR, Babiuk RP, Clugston RD. , et al. Mechanisms of action of the congenital diaphragmatic hernia-inducing teratogen nitrofen. Am J Physiol Lung Cell Mol Physiol 2007; 293 (04) L1079-L1087
  • 75 Nakazawa N, Takayasu H, Montedonico S, Puri P. Altered regulation of retinoic acid synthesis in nitrofen-induced hypoplastic lung. Pediatr Surg Int 2007; 23 (05) 391-396
  • 76 Schmidt AF, Gonçalves FL, Regis AC, Gallindo RM, Sbragia L. Prenatal retinoic acid improves lung vascularization and VEGF expression in CDH rat. Am J Obstet Gynecol 2012; 207 (01) 76.e25-76.e32
  • 77 Montedonico S, Sugimoto K, Felle P, Bannigan J, Puri P. Prenatal treatment with retinoic acid promotes pulmonary alveologenesis in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 2008; 43 (03) 500-507
  • 78 Rothman KJ, Moore LL, Singer MR, Nguyen U-SDT, Mannino S, Milunsky A. Teratogenicity of high vitamin A intake. N Engl J Med 1995; 333 (21) 1369-1373
  • 79 Lammer EJ, Chen DT, Hoar RM. , et al. Retinoic acid embryopathy. N Engl J Med 1985; 313 (14) 837-841
  • 80 Nau H. Teratogenicity of isotretinoin revisited: species variation and the role of all-trans-retinoic acid. J Am Acad Dermatol 2001; 45 (05) S183-S187
  • 81 Baptista MJ, Melo-Rocha G, Pedrosa C. , et al. Antenatal vitamin A administration attenuates lung hypoplasia by interfering with early instead of late determinants of lung underdevelopment in congenital diaphragmatic hernia. J Pediatr Surg 2005; 40 (04) 658-665
  • 82 Thébaud B, Barlier-Mur AM, Chailley-Heu B. , et al. Restoring effects of vitamin A on surfactant synthesis in nitrofen-induced congenital diaphragmatic hernia in rats. Am J Respir Crit Care Med 2001; 164 (06) 1083-1089
  • 83 Gallot D, Coste K, Jani J. , et al. Effects of maternal retinoic acid administration in a congenital diaphragmatic hernia rabbit model. Pediatr Pulmonol 2008; 43 (06) 594-603
  • 84 Lewis NA, Holm BA, Rossman J, Swartz D, Glick PL. Late administration of antenatal vitamin A promotes pulmonary structural maturation and improves ventilation in the lamb model of congenital diaphragmatic hernia. Pediatr Surg Int 2011; 27 (02) 119-124
  • 85 Pringle KC. Human fetal lung development and related animal models. Clin Obstet Gynecol 1986; 29 (03) 502-513
  • 86 Garne E, Haeusler M, Barisic I, Gjergja R, Stoll C, Clementi M. ; Euroscan Study Group. Congenital diaphragmatic hernia: evaluation of prenatal diagnosis in 20 European regions. Ultrasound Obstet Gynecol 2002; 19 (04) 329-333
  • 87 Sebire NJ, Snijders RJ, Davenport M, Greenough A, Nicolaides KH. Fetal nuchal translucency thickness at 10–14 weeks' gestation and congenital diaphragmatic hernia. Obstet Gynecol 1997; 90 (06) 943-946
  • 88 Burgos CM, Pearson EG, Davey M. , et al. Improved pulmonary function in the nitrofen model of congenital diaphragmatic hernia following prenatal maternal dexamethasone and/or sildenafil. Pediatr Res 2016; 80 (04) 577-585
  • 89 Mous DS, Kool HM, Buscop-van Kempen MJ. , et al. Clinically relevant timing of antenatal sildenafil treatment reduces pulmonary vascular remodeling in congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2016; 311 (04) L734-L742
  • 90 Russo FM, Toelen J, Eastwood MP. , et al. Transplacental sildenafil rescues lung abnormalities in the rabbit model of diaphragmatic hernia. Thorax 2016; 71 (06) 517-525
  • 91 Lemus-Varela MdeL, Soliz A, Gómez-Meda BC. , et al. Antenatal use of bosentan and/or sildenafil attenuates pulmonary features in rats with congenital diaphragmatic hernia. World J Pediatr 2014; 10 (04) 354-359
  • 92 Luong C, Rey-Perra J, Vadivel A. , et al. Antenatal sildenafil treatment attenuates pulmonary hypertension in experimental congenital diaphragmatic hernia. Circulation 2011; 123 (19) 2120-2131
  • 93 Makanga M, Maruyama H, Dewachter C. , et al. Prevention of pulmonary hypoplasia and pulmonary vascular remodeling by antenatal simvastatin treatment in nitrofen-induced congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2015; 308 (07) L672-L682
  • 94 Yamamoto Y, Thebaud B, Vadivel A, Eaton F, Jain V, Hornberger LK. Doppler parameters of fetal lung hypoplasia and impact of sildenafil. Am J Obstet Gynecol 2014; 211 (03) 263.e1-263.e8
  • 95 Kattan J, Céspedes C, González A, Vio CP. Sildenafil stimulates and dexamethasone inhibits pulmonary vascular development in congenital diaphragmatic hernia rat lungs. Neonatology 2014; 106 (01) 74-80
  • 96 Fink HA, Mac Donald R, Rutks IR, Nelson DB, Wilt TJ. Sildenafil for male erectile dysfunction: a systematic review and meta-analysis. Arch Intern Med 2002; 162 (12) 1349-1360
  • 97 Nichols DJ, Muirhead GJ, Harness JA. Pharmacokinetics of sildenafil after single oral doses in healthy male subjects: absolute bioavailability, food effects and dose proportionality. Br J Clin Pharmacol 2002; 53 (Suppl. 01) 5S-12S
  • 98 Kass DA, Takimoto E, Nagayama T, Champion HC. Phosphodiesterase regulation of nitric oxide signaling. Cardiovasc Res 2007; 75 (02) 303-314
  • 99 Corbin JD, Beasley A, Blount MA, Francis SH. High lung PDE5: a strong basis for treating pulmonary hypertension with PDE5 inhibitors. Biochem Biophys Res Commun 2005; 334 (03) 930-938
  • 100 Galiè N, Ghofrani HA, Torbicki A. , et al; Sildenafil Use in Pulmonary Arterial Hypertension (SUPER) Study Group. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 2005; 353 (20) 2148-2157
  • 101 Barst RJ, Ivy DD, Gaitan G. , et al. A randomized, double-blind, placebo-controlled, dose-ranging study of oral sildenafil citrate in treatment-naive children with pulmonary arterial hypertension. Circulation 2012; 125 (02) 324-334
  • 102 Shah PS, Ohlsson A. Sildenafil for pulmonary hypertension in neonates. Cochrane Database Syst Rev 2011; (08) CD005494
  • 103 Vukcevic Z, Coppola CP, Hults C, Gosche JR. Nitrovasodilator responses in pulmonary arterioles from rats with nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 2005; 40 (11) 1706-1711
  • 104 Travadi JN, Patole SK. Phosphodiesterase inhibitors for persistent pulmonary hypertension of the newborn: a review. Pediatr Pulmonol 2003; 36 (06) 529-535
  • 105 Polglase GR, Wallace MJ, Grant DA, Hooper SB. Influence of fetal breathing movements on pulmonary hemodynamics in fetal sheep. Pediatr Res 2004; 56 (06) 932-938
  • 106 Jaillard S, Larrue B, Deruelle P. , et al. Effects of phosphodiesterase 5 inhibitor on pulmonary vascular reactivity in the fetal lamb. Ann Thorac Surg 2006; 81 (03) 935-942
  • 107 Tantini B, Manes A, Fiumana E. , et al. Antiproliferative effect of sildenafil on human pulmonary artery smooth muscle cells. Basic Res Cardiol 2005; 100 (02) 131-138
  • 108 Yang J, Li X, Al-Lamki RS. , et al. Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol 2013; 33 (01) 34-42
  • 109 Ladha F, Bonnet S, Eaton F, Hashimoto K, Korbutt G, Thébaud B. Sildenafil improves alveolar growth and pulmonary hypertension in hyperoxia-induced lung injury. Am J Respir Crit Care Med 2005; 172 (06) 750-756
  • 110 Park HS, Park JW, Kim HJ. , et al. Sildenafil alleviates bronchopulmonary dysplasia in neonatal rats by activating the hypoxia-inducible factor signaling pathway. Am J Respir Cell Mol Biol 2013; 48 (01) 105-113
  • 111 Aman J, Bogaard HJ, Vonk Noordegraaf A. Why vessels do matter in pulmonary disease. Thorax 2016; 71 (08) 767-769
  • 112 Koyama H, Bornfeldt KE, Fukumoto S, Nishizawa Y. Molecular pathways of cyclic nucleotide-induced inhibition of arterial smooth muscle cell proliferation. J Cell Physiol 2001; 186 (01) 1-10
  • 113 Shue EH, Schecter SC, Gong W. , et al. Antenatal maternally-administered phosphodiesterase type 5 inhibitors normalize eNOS expression in the fetal lamb model of congenital diaphragmatic hernia. J Pediatr Surg 2014; 49 (01) 39-45 , discussion 45
  • 114 Vorhies EE, Ivy DD. Drug treatment of pulmonary hypertension in children. Paediatr Drugs 2014; 16 (01) 43-65
  • 115 Alipour MR, Lookzadeh MH, Namayandeh SM, Pezeshkpour Z, Sarebanhassanabadi M. Comparison of tadalafil and sildenafil in controlling neonatal persistent pulmonary hypertension. Iran J Pediatr 2017; 27 (01) e6385
  • 116 Walker DK, Ackland MJ, James GC. , et al. Pharmacokinetics and metabolism of sildenafil in mouse, rat, rabbit, dog and man. Xenobiotica 1999; 29 (03) 297-310
  • 117 Mukherjee A, Dombi T, Wittke B, Lalonde R. Population pharmacokinetics of sildenafil in term neonates: evidence of rapid maturation of metabolic clearance in the early postnatal period. Clin Pharmacol Ther 2009; 85 (01) 56-63
  • 118 Baquero H, Soliz A, Neira F, Venegas ME, Sola A. Oral sildenafil in infants with persistent pulmonary hypertension of the newborn: a pilot randomized blinded study. Pediatrics 2006; 117 (04) 1077-1083
  • 119 Vargas-Origel A, Gómez-Rodríguez G, Aldana-Valenzuela C, Vela-Huerta MM, Alarcón-Santos SB, Amador-Licona N. The use of sildenafil in persistent pulmonary hypertension of the newborn. Am J Perinatol 2010; 27 (03) 225-230
  • 120 Herrera TR, Concha GP, Holberto CJ, Loera GRG, Rodríguez BI. Oral sildenafil as an alternative treatment in the persistent pulmonary hypertension in newborns. Revista Mexicana de Pediatria. 2006; 73 (04) 159-163
  • 121 Barst RJ, Beghetti M, Pulido T. , et al; STARTS-2 Investigators. STARTS-2: long-term survival with oral sildenafil monotherapy in treatment-naive pediatric pulmonary arterial hypertension. Circulation 2014; 129 (19) 1914-1923
  • 122 FDA UFaDA. Revatio (sildenafil): Drug Safety Communication - Recommendation Against Use in Children. 2012. Available at: http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm317743.htm . Accessed April 25, 2016
  • 123 Abman SH, Kinsella JP, Rosenzweig EB. , et al; Pediatric Pulmonary Hypertension Network (PPHNet). Implications of the U.S. Food and Drug Administration warning against the use of sildenafil for the treatment of pediatric pulmonary hypertension. Am J Respir Crit Care Med 2013; 187 (06) 572-575
  • 124 McElhinney DB. A new START for sildenafil in pediatric pulmonary hypertension: reframing the dose-survival relationship in the STARTS-2 trial. Circulation 2014; 129 (19) 1905-1908
  • 125 European Medicines Agency. Assessment report for Revatio, International Non-proprietary Name: sildenafil. Procedure No. EMEA/H/C/000638/II/0028. 2011. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/000638/WC500107804.pdf . Accessed April 26, 2016
  • 126 Samangaya RA, Mires G, Shennan A. , et al. A randomised, double-blinded, placebo-controlled study of the phosphodiesterase type 5 inhibitor sildenafil for the treatment of preeclampsia. Hypertens Pregnancy 2009; 28 (04) 369-382
  • 127 Maher MA, Sayyed TM, Elkhouly N. Sildenafil citrate therapy for oligohydramnios: a randomized controlled trial. Obstet Gynecol 2017; 129 (04) 615-620
  • 128 Ganzevoort W, Alfirevic Z, von Dadelszen P. , et al. STRIDER: Sildenafil Therapy In Dismal prognosis Early-onset intrauterine growth Restriction--a protocol for a systematic review with individual participant data and aggregate data meta-analysis and trial sequential analysis. Syst Rev 2014; 3: 23
  • 129 Chen J, Gong X, Chen P, Luo K, Zhang X. Effect of L-arginine and sildenafil citrate on intrauterine growth restriction fetuses: a meta-analysis. BMC Pregnancy Childbirth 2016; 16: 225
  • 130 Maharaj CH, O'Toole D, Lynch T. , et al. Effects and mechanisms of action of sildenafil citrate in human chorionic arteries. Reprod Biol Endocrinol 2009; 7: 34-34
  • 131 Miller SL, Loose JM, Jenkin G, Wallace EM. The effects of sildenafil citrate (Viagra) on uterine blood flow and well being in the intrauterine growth-restricted fetus. Am J Obstet Gynecol 2009; 200 (01) 102.e1-102.e7
  • 132 Inocencio I, Polglase G, Amy S, Mihelakis J, Miller S, Allison B. Long-term maternal sildenafil treatment increases sildenafil and endothelium independent mediated cerebral vasodilation in both fetal growth restricted and appropriately grown fetal lambs. J Paediatr Child Health 2017; 53 (S2): 47-48
  • 133 Zhu B, Strada S, Stevens T. Cyclic GMP-specific phosphodiesterase 5 regulates growth and apoptosis in pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 2005; 289 (02) L196-L206
  • 134 Davey M, Shegu S, Danzer E. , et al. Pulmonary arteriole muscularization in lambs with diaphragmatic hernia after combined tracheal occlusion/glucocorticoid therapy. Am J Obstet Gynecol 2007; 197 (04) 381.e1-381.e7
  • 135 Davey MG, Danzer E, Schwarz U, Adzick NS, Flake AW, Hedrick HL. Prenatal glucocorticoids and exogenous surfactant therapy improve respiratory function in lambs with severe diaphragmatic hernia following fetal tracheal occlusion. Pediatr Res 2006; 60 (02) 131-135
  • 136 Delabaere A, Marceau G, Coste K. , et al. Effects of tracheal occlusion with retinoic acid administration on normal lung development. Prenat Diagn 2017; 37 (05) 427-434
  • 137 Russo FM, Da Cunha MGMCM, Jimenez J. , et al. 86: Synergic effect of maternal sildenafil and fetal tracheal occlusion improving pulmonary development in the rabbit model for congenital diaphragmatic hernia. Am J Obstet Gynecol 2017; 216 (01) S62