Synlett 2020; 31(08): 745-749
DOI: 10.1055/s-0039-1690798
synpacts
© Georg Thieme Verlag Stuttgart · New York

Late-Stage Difluoromethylation of Aliphatic Carboxylic Acids with Copper Catalysis

Wenhao Yan
Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA   Email: wei.liu@miamioh.edu
,
Matthew Paeth
,
Samson Zacate
,
Xiaojun Zeng
,
Wei Liu
› Author Affiliations
W.L. thanks Miami University for the start-up funding.
Further Information

Publication History

Received: 05 December 2019

Accepted: 30 December 2019

Publication Date:
31 January 2020 (online)


Abstract

Difluoromethyl groups are of great importance to synthetic and pharmaceutical chemistry because of their unique properties that regulate molecular bioactivity. In this article, approaches towards difluoromethylation are discussed and the development of the first aliphatic decarboxylative difluoromethylation reaction is detailed. With a broad scope, the real-world utility of the protocol is demonstrated.

 
  • References

    • 1a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1b Muller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1c Wang J, Sanchez-Rosello M, Acena JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 1d Gouverneur V. Nat. Chem. 2012; 4: 152
    • 2a Sessler CD, Rahm M, Becker S, Goldberg JM, Wang F, Lippard SJ. J. Am. Chem. Soc. 2017; 139: 9325
    • 2b Erickson JA, McLoughlin JI. J. Org. Chem. 1995; 60: 1626
    • 2c Zafrani Y, Yeffet D, Sod-Moriah G, Berliner A, Amir D, Marciano D, Gershonov E, Saphier S. J. Med. Chem. 2017; 60: 797
    • 2d Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 2e Zafrani Y, Sod-Moriah G, Yeffet D, Berliner A, Amir D, Marciano D, Elias S, Katalan S, Ashkenazi N, Madmon M, Gershonov E, Saphier S. J. Med. Chem. 2019; 62: 5628

      For selected examples, see:
    • 3a Fujiwara Y, Dixon JA, Rodriguez RA, Baxter RD, Dixon DD, Collins MR, Blackmond DG, Baran PS. J. Am. Chem. Soc. 2012; 134: 1494
    • 3b Sakamoto R, Kashiwagi H, Maruoka K. Org. Lett. 2017; 19: 5126
    • 3c Tung TT, Christensen SB, Nielsen J. Chem. Eur. J. 2017; 23: 18125
    • 3d Zhu SQ, Liu YL, Li H, Xu XH, Qing FL. J. Am. Chem. Soc. 2018; 140: 11613

      For reviews, see:
    • 4a Chen B, Vicic DA. Top. Organomet. Chem. 2014; 52: 113
    • 4b Belhomme MC, Besset T, Poisson T, Pannecoucke X. Chem. Eur. J. 2015; 21: 12836
    • 4c Lu Y, Liu C, Chen QY. Curr. Org. Chem. 2015; 19: 1638
    • 4d Rong J, Ni C, Hu J. Asian J. Org. Chem. 2017; 6: 139
    • 4e Yerien DE, Barata-Vallejo S, Postigo A. Chem. Eur. J. 2017; 23: 14676
    • 4f Feng Z, Xiao YL, Zhang X. Acc. Chem. Res. 2018; 51: 2264

    • For selected examples, see:
    • 4g Feng Z, Min Q, Fu X, An L, Zhang X. Nat. Chem. 2017; 9: 918
    • 4h Fu X, Xue X, Zhang X, Xiao Y, Zhang S, Guo Y, Leng X, Houk NK, Zhang X. Nat. Chem. 2019; 11: 948

      For selected examples, see:
    • 5a Lin QY, Xu XH, Zhang K, Qing FL. Angew. Chem. Int. Ed. 2016; 55: 1479
    • 5b Xiong P, Xu HH, Song J, Xu HC. J. Am. Chem. Soc. 2018; 140: 2460
    • 5c Meyer CF, Hell SM, Misale A, Trabanco AA, Gouverneur V. Angew. Chem. Int. Ed. 2019; 58: 8829
    • 5d Tang XJ, Zhang Z, Dolbier WR. Jr. Chem. Eur. J. 2015; 21: 18961
    • 5e Zhang M, Lin JH, Xiao JC. Angew. Chem. Int. Ed. 2019; 58: 6079
    • 5f Ma JJ, Yi WB. Org. Biomol. Chem. 2017; 15: 4295
    • 5g Banik SM, Medley JW, Jacobsen EN. Science 2016; 353: 51

      For selected examples, see:
    • 6a Xie Q, Zhu Z, Li L, Ni C, Hu J. Angew. Chem. Int. Ed. 2019; 131: 6471
    • 6b Lu SL, Li X, Qin WB, Liu JJ, Huang YY, Wong HN. C, Liu G.-K. Org. Lett. 2018; 20: 6925
    • 6c Wang J, Tokunaga E, Shibata N. Chem. Commun. 2018; 54: 8881
    • 6d Duchemin N, Buccafusca R, Daumas M, Ferey V, Arseniyadis S. Org. Lett. 2019; 21: 8205
    • 7a Shen H, Liu Z, Zhang P, Tan X, Zhang Z, Li C. J. Am. Chem. Soc. 2017; 139: 9843
    • 7b Xiao H, Shen H, Zhu L, Li C. J. Am. Chem. Soc. 2019; 141: 11440
    • 7c Zhang Z, Zhu L, Li C. Chin. J. Chem. 2019; 37: 452
    • 7d Zhang Z, Zhu L. Chin. J. Chem. 2019; 37: 630
    • 7e Tan XQ, Liu ZL, Shen HG, Zhang P, Zhang ZZ, Li CZ. J. Am. Chem. Soc. 2017; 139: 12430
  • 8 Guo S, AbuSalim DI, Cook SP. J. Am. Chem. Soc. 2018; 140: 12378
  • 9 Paeth M, Carson W, Luo JH, Tierney D, Cao Z, Cheng MJ, Liu W. Chem. Eur. J. 2018; 24: 11559
  • 10 Paeth M, Tyndall SB, Chen LY, Hong JC, Carson WP, Liu X, Sun X, Liu J, Yang K, Hale EM, Tierney DL, Liu B, Cao Z, Cheng MJ, Goddard WA, Liu W. J. Am. Chem. Soc. 2019; 141: 3153
  • 11 Xu P, Guo S, Wang L, Tang P. Angew. Chem. Int. Ed. 2014; 53: 5955

    • For a review, see:
    • 12a Murarka S. Adv. Synth. Catal. 2018; 360: 1735

    • For selected examples of RAEs as coupling partners for C–C bond formation, see:
    • 12b Edwards JT, Merchant RR, McClymont KS, Knouse KW, Qin T, Malins LR, Vokits B, Shaw SA, Bao DH, Wei FL, Zhou T, Eastgate MD, Baran PS. Nature 2017; 545: 213
    • 12c Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science 2016; 352: 801
    • 12d Lackner GL, Quasdorf KW, Overman LE. J. Am. Chem. Soc. 2013; 135: 15342
    • 12e Proctor RS. J, Davis HJ, Phipps RJ. Science 2018; 360: 419
    • 12f Okada K, Okamoto K, Oda M. J. Am. Chem. Soc. 1988; 110: 8736
    • 12g Okada K, Okamoto K, Morita N, Okubo K, Oda M. J. Am. Chem. Soc. 1991; 113: 9401
    • 12h Allen LJ, Cabrera PJ, Lee M, Sanford MS. J. Am. Chem. Soc. 2014; 136: 5607
    • 12i Xuan J, Zhang ZG, Xiao WJ. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 12j Griffin JD, Zeller MA, Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 11340
    • 12k Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 12l Jamison CR, Overman LE. Acc. Chem. Res. 2016; 49: 1578
    • 12m Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan CM, Gianatassio R, Schmidt MA, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2016; 138: 2174
    • 12n Wang D, Zhu N, Chen P, Lin Z, Liu G. J. Am. Chem. Soc. 2017; 139: 15632
    • 12o Zhao W, Wurz RP, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 12153
    • 12p Schwarz J, König B. Green Chem. 2018; 20: 323
    • 12q Tlahuext-Aca A, Candish L, Garza-Sanchez RA, Glorius F. ACS Catal. 2018; 8: 1715
    • 12r Mao R, Balon J, Hu X. Angew. Chem. 2018; 130: 9645
    • 12s Ishii T, Kakeno Y, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2019; 141: 3854
    • 12t Wang J, Cary BP, Beyer PD, Gellman SH, Weix DJ. Angew. Chem. Int. Ed. 2019; 58: 12081
  • 13 Wang J, Shang M, Lundberg H, Feu KS, Hecker SJ, Qin T, Blackmond DG, Baran PS. ACS Catal. 2018; 8: 9537
  • 14 Xue W, Oestreich M. Angew. Chem. Int. Ed. 2017; 56: 11649
    • 15a Fier PS, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 5524
    • 15b Serizawa H, Ishii K, Aikawa K, Mikami K. Org. Lett. 2016; 18: 3686
    • 15c Bour JR, Kariofillis SK, Sanford MS. Organometallics 2017; 36: 1220
    • 15d Gu Y, Chang D, Leng X, Gu Y, Shen Q. Organometallics 2015; 34: 3065
    • 15e Matheis C, Jouvin K, Goossen LJ. Org. Lett. 2014; 16: 5984
    • 15f Prakash GK. S, Ganesh SK, Jones JP, Kulkarni A, Masood K, Swabeck JK, Olah GA. Angew. Chem. Int. Ed. 2012; 51: 12090
  • 16 Li H, Breen CP, Seo H, Jamison TF, Fang YQ, Bio MM. Org. Lett. 2018; 20: 1338
  • 17 Xu L, Vicic DA. J. Am. Chem. Soc. 2016; 138: 2536
  • 18 Zeng X, Yan W, Zacate SB, Chao TH, Sun X, Cao Z, Bradford KG. E, Paeth M, Tyndall SB, Yang K, Kuo TC, Cheng MJ, Liu W. J. Am. Chem. Soc. 2019; 141: 11398