Synlett 2021; 32(07): 663-673
DOI: 10.1055/s-0040-1706480
account

Synthetic Studies towards the Total Synthesis of Indole Alkaloids Containing Indolyl Lactam Frameworks

Dong-Xing Tan
a   CAS Key Lab of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. of China   Email: fshan@ciac.ac.cn
b   University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
,
Fu-She Han
a   CAS Key Lab of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. of China   Email: fshan@ciac.ac.cn
b   University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (grant nos. 21772191 and 21272225).


Abstract

In this account, recent progress on the synthetic studies of several monoterpene indole alkaloids, (±)-mersicarpine, misassigned (±)-tronoharine, and (±)-leuconodines D and E, is summarized. Specifically, the rationale for the design and development of the Lewis acid catalyzed SN1-type substitution and formal [3+3] cycloaddition reaction of indol-2-yl carbinols, and the Pd-catalyzed aerobic oxidative intramolecular Heck cross-coupling of indolyl amides tethered with a terminal olefin functionality, are emphasized. These key reactions set the basis for the rapid construction of the fused ring skeleton containing an all-carbon quaternary center at the indol-2-yl position.

1 Introduction

2 Synthetic Study of (±)-Mersicarpine

3 Synthetic Study of the Misassigned (±)-Tronoharine

4 Study of the Asymmetric Reaction of Indol-2-yl Carbinols

5 Synthetic Study of (±)-Leuconodines D and E

6 Conclusion



Publication History

Received: 08 August 2020

Accepted after revision: 24 August 2020

Article published online:
07 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Pfaffenbach M, Gaich T. Chem. Eur. J. 2016; 22: 3600 ; and references therein
    • 1b Geng Q, Li Z, Lv Z, Liang G. Chin. J. Org. Chem. 2016; 36: 1447 ; and references therein
    • 1c Tokuyama H. J. Synth. Org. Chem., Jpn. 2015; 73: 66 ; and references therein
    • 1d Xu Z, Wang Q, Zhu J. Chem. Soc. Rev. 2018; 47: 7882
  • 2 Kam T.-S, Subramaniam G, Lim K.-H, Choo Y.-M. Tetrahedron Lett. 2004; 45: 5995
    • 3a Magolan J, Carson CA, Kerr MA. Org. Lett. 2008; 10: 1437
    • 3b Biechy A, Zard SZ. Org. Lett. 2009; 11: 2800
    • 3c Nakajima R, Ogino T, Yokoshima S, Fukuyama T. J. Am. Chem. Soc. 2010; 132: 1236
    • 3d Iwama Y, Okano K, Sugimoto K, Tokuyama H. Org. Lett. 2012; 14: 2320
    • 3e Iwama Y, Okano K, Sugimoto K, Tokuyama H. Chem. Eur. J. 2013; 19: 9325
    • 3f Zhong X, Li Y, Han F.-S. Chem. Eur. J. 2012; 18: 9784
    • 3g Zhong X, Qi S, Li Y, Zhang J, Han F.-S. Tetrahedron 2015; 71: 3734
    • 3h Xu Z, Wang Q, Zhu J. J. Am. Chem. Soc. 2013; 135: 19127
    • 3i Xu Z, Wang Q, Zhu J. J. Am. Chem. Soc. 2015; 137: 6712
    • 3j Lv Z, Li Z, Liang G. Org. Lett. 2014; 16: 1653
    • 3k Li Z, Geng Q, Lv Z, Pritchett BP, Baba K, Numarjiri Y, Stoltz BM, Liang G. Org. Chem. Front. 2015; 2: 236
    • 3l Yang Y, Bai Y, Sun S, Dai M. Org. Lett. 2014; 16: 6216
    • 3m Zhang Y, Xue Y, Luo T. Tetrahedron 2017; 73: 4201
    • 3n Liu Y, Wang H. Chem. Commun. 2019; 59: 3544
    • 3o Kim R, Ferreira AJ, Beaudry CM. Angew. Chem. Int. Ed. 2019; 58: 12595
    • 4a Kam T.-S, Sim K.-M, Lim T.-M. Tetrahedron Lett. 1999; 40: 5409
    • 4b Sim DS.-Y, Chong K.-W, Nge C.-E, Low Y.-Y, Sim K.-S, Kam T.-S. J. Nat. Prod. 2014; 77: 2504
  • 5 Zhong X, Li Y, Zhang J, Han F.-S. Org. Lett. 2015; 17: 720
    • 6a Abe F, Yamauchi T. Phytochemistry 1993; 35: 169
    • 6b Feng T, Cai X.-H, Liu Y.-P, Li Y, Wang Y.-Y, Luo X.-D. J. Nat. Prod. 2010; 73: 22
    • 6c Lim S.-H, Sim K.-M, Abdullah Z, Hiraku O, Hayashi M, Komiyama K, Kam T.-S. J. Nat. Prod. 2007; 70: 1380
    • 6d Feng T, Cai X.-H, Zhao P.-J, Du Z.-Z, Li W.-Q, Luo X.-D. Planta Med. 2009; 75: 1537
    • 6e Gan C.-Y, Low Y.-Y, Thomas NF, Kam T.-S. J. Nat. Prod. 2013; 76: 957
    • 7a Dagoneau D, Xu Z, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2016; 55: 760
    • 7b Umehara A, Ueda H, Tokuyama H. Org. Lett. 2014; 14: 2526
    • 7c Pfaffenbach M, Gaich T. Chem. Eur. J. 2015; 21: 6355
    • 7d Higuchi K, Suzuki S, Ueda R, Oshima N, Kobayashi E, Tayu M, Kawasaki T. Org. Lett. 2015; 17: 154
    • 7e Zhang J, Han F.-S. J. Org. Chem. 2019; 84: 13890
    • 8a Zhou J, Tan D.-X, Han F.-S. Angew. Chem. Int. Ed. 2020; in press; DOI: 10.1002/anie.202008242
    • 8b Tan D.-X, Zhou J, Liu C.-Y, Han F.-S. Angew. Chem. Int. Ed. 2020; 59: 3834
  • 9 Fu T, Bonaparte A, Martin SF. Tetrahedron 2009; 50: 3253
  • 10 Hatano M, Suzuki S, Ishihara K. J. Am. Chem. Soc. 2006; 128: 9998
  • 11 Kan T, Fukuyama T. Chem. Commun. 2004; 353
    • 12a Toyota M, Wada T, Ihara M. J. Org. Chem. 2000; 65: 4565
    • 12b Marino J.-P, Rubio M.-B, Cao G, De Dios A. J. Am. Chem. Soc. 2002; 124: 13398
    • 12c Thompson C.-F, Jamison T.-F, Jacobsen E.-N. J. Am. Chem. Soc. 2000; 122: 10482
    • 12d Hayashida J, Rawal V.-H. Angew. Chem. Int. Ed. 2008; 47: 4373
    • 13a Fletcher MD, Hurst TE, Miles TJ, Moody CJ. Tetrahedron 2006; 62: 5454
    • 13b Lu J.-Y, Arndt H.-D. J. Org. Chem. 2007; 72: 4205
    • 13c Lu J.-Y, Keith JA, Shen W.-Z, Schürmann M, Preut H, Jacob T, Arndt H.-D. J. Am. Chem. Soc. 2008; 130: 13219
  • 14 Zhong X, Li Y, Zhang J, Zhang W.-X, Wang S.-X, Han F.-S. Chem. Commun. 2014; 50: 11181
  • 15 Pilgrim BS, Donohoe TJ. J. Org. Chem. 2013; 78: 2149 ; and references cited therein
    • 16a Martin CL, Nakamura S, Otte R, Overman LE. Org. Lett. 2011; 13: 138
    • 16b Zaimoku H, Taniguchi T, Ishibashi H. Org. Lett. 2012; 14: 1656
    • 16c Granger BA, Jewett IT, Butler JD, Hua B, Knezevic CE, Parkinson EI, Hergenrother PJ, Martin SF. J. Am. Chem. Soc. 2013; 135: 12984

      For some selected examples, see:
    • 17a Sun F.-L, Zheng X.-J, Gu Q, He Q.-L, You S.-L. Eur. J. Org. Chem. 2010; 47
    • 17b Zhou M.-H, Jiang Y.-J, Fan Y.-S, Gao Y, Liu S, Zhang S. Org. Lett. 2014; 16: 1096
    • 17c Xu B, Shi L.-L, Zhang Y.-Z, Wu Z.-J, Fu L.-N, Luo C.-Q, Zhang L.-X, Peng Y.-G, Guo Q.-X. Chem. Sci. 2014; 5: 1988
    • 17d Guo Q.-X, Peng Y.-G, Zhang J.-W, Song L, Feng Z, Gong L.-Z. Org. Lett. 2009; 11: 4620
    • 17e Rueping M, Nachtsheim BJ, Moreth SA, Bolte M. Angew. Chem. Int. Ed. 2008; 47: 593
  • 18 Liu C.-Y. Ph.D. Thesis . Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, and the University of Chinese Academy of Sciences; P. R. of China: 2017
    • 19a Qi S, Liu C.-Y, Ding J.-Y, Han F.-S. Chem. Commun. 2014; 50: 8605
    • 19b Liu C.-Y, Han F.-S. Chem. Commun. 2015; 51: 11844

      For reviews, see:
    • 20a Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
    • 20b Petrini M. Adv. Synth. Catal. 2020; 362: 1214
    • 20c Wu H, He Y.-P, Shi F. Synthesis 2015; 47: 1990
    • 20d Bhadury PS, Pang J. Curr. Org. Chem. 2014; 18: 2108
    • 21a Abbiati G, Beccalli EM, Broggini G, Zoni C. J. Org. Chem. 2003; 68: 7625
    • 21b Ferreira EM, Stoltz BM. J. Am. Chem. Soc. 2003; 125: 9578
    • 21c Ferreira EM, Zhang H, Stoltz BM. Tetrahedron 2008; 64: 5987
    • 21d Schiffner JA, Wöste TH, Oestreich M. Eur. J. Org. Chem. 2010; 174
    • 21e Pintori DG, Greaney MF. J. Am. Chem. Soc. 2011; 133: 1209
    • 21f Kandukuri SR, Schiffner JA, Oestreich M. Angew. Chem. Int. Ed. 2012; 51: 1265
    • 21g Broggini C, Barbera V, Beccalli EM, Borsini E, Galli S, Lanza G, Zecchi G. Adv. Synth. Catal. 2012; 354: 159
    • 21h Yang J.-M, Zhu C.-Z, Tang X.-Y, Shi M. Angew. Chem. Int. Ed. 2014; 53: 5142
    • 21i Ikemoto H, Yoshino T, Sakata K, Matsunaga S, Kanai M. J. Am. Chem. Soc. 2014; 136: 5424
    • 21j Gao S, Yang C, Huang Y, Zhao L, Wu X, Yao H, Lin A. Org. Biomol. Chem. 2016; 14: 840
    • 22a Guan J, Wu G.-J, Han F.-S. Chem. Eur. J. 2014; 20: 3301
    • 22b Du Z.-J, Guan J, Wu G.-J, Xu P, Gao L.-X, Han F.-S. J. Am. Chem. Soc. 2015; 137: 632
    • 23a Wu G.-J, Zhang Y.-H, Tan D.-X, Han F.-S. Nat. Commun. 2018; 9: 2148
    • 23b Cao B.-C, Wu G.-J, Yu F, He Y.-P, Han F.-S. Org. Lett. 2018; 20: 3687
    • 23c Wu G.-J, Han F.-S, Zhao Y.-L. RSC Adv. 2015; 5: 69776
  • 24 Zhang J, Han F.-S. iScience 2019; 17: 256
    • 25a Feng X, Jiang G, Xia Z, Hu J, Wan X, Gao J.-M, Lai Y, Xie W. Org. Lett. 2015; 17: 4428
    • 25b Lott R.-S, Chauhan V.-S, Stammer C. -H. J. Chem. Soc., Chem. Commun. 1979; 495
    • 25c Mao Z, Baldwin S.-W. Org. Lett. 2004; 6: 2425
  • 26 Garber S, Kingsbury J, Gray B, Hoveyda A. J. Am. Chem. Soc. 2000; 122: 8168
    • 27a Crich D, Quintero L. Chem. Rev. 1989; 89: 1413
    • 27b Singh V, Prathap S, Porinchu M. J. Org. Chem. 1998; 63: 4011