Synlett 2020; 31(15): 1501-1506
DOI: 10.1055/s-0040-1707214
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium/Sensory Component-Catalyzed Homocoupling Reactions of Aryl Halides

Fengyu Bao
a   College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. of China   Email: baofengyu@henau.edu.cn
,
Zhikai Liu
b   College of Tobacco, Henan Agricultural University, Zhengzhou 450002, P. R. of China   Email: liupengfei523@126.com
,
Haixin Bai
a   College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. of China   Email: baofengyu@henau.edu.cn
,
Haiyan Zhang
a   College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. of China   Email: baofengyu@henau.edu.cn
,
Pengfei Liu
b   College of Tobacco, Henan Agricultural University, Zhengzhou 450002, P. R. of China   Email: liupengfei523@126.com
,
Qidong Zhang
c   Zhengzhou Tobacco Research Institute, Zhengzhou 450001, P. R. of China   Email: chaigb@ztri.com.cn
,
Guobi Chai
c   Zhengzhou Tobacco Research Institute, Zhengzhou 450001, P. R. of China   Email: chaigb@ztri.com.cn
› Author Affiliations
This work was supported by Henan Science and Technology Committee (182102110194) and Young Elite Scientists Sponsorship Program by CAST (2017QNRC001).
Further Information

Publication History

Received: 06 March 2020

Accepted after revision: 25 June 2020

Publication Date:
29 July 2020 (online)


Dedicated to Ms. Gailian Xiao

Abstract

A novel and efficient catalyst system was developed for homocoupling reactions of aryl halides. The catalyst system consists of Pd(OAc)2 and the peppery sensory component of tobacco leaves. This is the first time that a sensory component has been used in an organic reaction. Experiments using the catalyst system showed that the reactions proceeded smoothly under air in the absence of both an additional ligand and a reductant. Furthermore, the catalyst system can be applied to the coupling reactions of hetaryl iodides. Many functional groups (including a hydroxy group) are tolerated.

Supporting Information

 
  • References and Notes


    • For selected examples, see:
    • 1a Pollner G, Schieberle P. J. Agric. Food Chem. 2016; 64: 627
    • 1b Meyer S, Dunkel A, Hofmann T. J. Agric. Food Chem. 2016; 64: 1164
    • 1c Schmidberger PC, Schieberle P. J. Agric. Food Chem. 2017; 65: 9287
    • 1d Kranz M, Viton F, Smarrito-Menozzi C, Hofmann T. J. Agric. Food Chem. 2018; 66: 194
    • 2a Chi G, Liu J, Bao F, Zhang W, Qin Y, Sun S, Zong Y, Zhang J, Qiu B, Liu X, Guo P, Zhao X, Chai G, Zhang Q. Yancao Keji 2015; 48: 27
    • 2b Zhang Q, Liu J, Zhang W, Lu B, Zhang H, Chi G, Mao J, Wang D, Sun S, Zong Y, Zhang J, Chai G, Bao F. Yancao Keji 2016; 49: 58
    • 2c Lai Y, Wang J, Tao H, Chai G, Shi Q, Mao J, Zhang Q, Fan W, Liu J, Wang Y, Lin B. Yancao Keji 2020; 53: 55
    • 3a Ball LT, Lloyd-Jones GC, Russell CA. Science 2012; 337: 1644
    • 3b García-López J.-A, Greaney MF. Chem. Soc. Rev. 2016; 45: 6766
    • 3c Felpin F.-X, Sengupta S. Chem. Soc. Rev. 2019; 48: 1150
    • 4a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 4b Negishi E.-i. Angew. Chem. Int. Ed. 2011; 50: 6738

    • For selected examples of Suzuki–Miyaura reactions see:
    • 4c Qian H, Zhang T, Song L, Yu S, Yuan Q, Sun L, Zhang D, Yin Z, Dai Y. Eur. J. Org. Chem. 2017; 2017: 1337
    • 4d Qian H, Zhang T, Yin Z, Wang Q, Yuan Q, Jiang R, Yan S, Zhao X. J. Organomet. Chem. 2016; 824: 124
  • 5 Fanta PE. Synthesis 1974; 9

    • For selected examples see:
    • 6a Zeng M, Du Y, Qi C, Zuo S, Li X, Shao L, Zhang X.-M. Green Chem. 2011; 13: 350
    • 6b Zhang L, Wang A, Miller JT, Liu X, Yang X, Wang W, Li L, Huang Y, Mou C.-Y, Zhang T. ACS Catal. 2014; 4: 1546
    • 6c Marina N, Lanterna AE, Scaiano JC. ACS Catal. 2018; 8: 7593
    • 7a Hassan J, Penalva V, Lavenot L, Gozzi C, Lemaire M. Tetrahedron 1998; 54: 13793
    • 7b Penalva V, Hassan J, Lavenot L, Gozzi C, Lemaire M. Tetrahedron Lett. 1998; 39: 2559
    • 7c Zeng M, Du Y, Shao L, Qi C, Zhang X.-M. J. Org. Chem. 2010; 75: 2556
    • 7d Shao L, Du Y, Zeng M, Li X, Shen W, Zuo S, Lu Y, Zhang X.-M, Qi C. Appl. Organomet. Chem. 2010; 24: 421
    • 7e Huang Y, Liu L, Feng W. ChemistrySelect 2016; 1: 630
  • 8 Wang L, Zhang Y, Liu L, Wang Y. J. Org. Chem. 2006; 71: 1284
  • 9 Monopoli A, Caló V, Ciminale F, Cotugno P, Angelici C, Cioffi N, Nacci A. J. Org. Chem. 2010; 75: 3908
  • 10 Park BR, Kim KH, Kim TH, Kim JN. Tetrahedron Lett. 2011; 52: 4405
  • 11 Firouzabadi H, Iranpoor N, Kazemi F. J. Mol. Catal. A: Chem. 2011; 348: 94
    • 12a Brenda M, Knebelkamp A, Creiner A, Heitz W. Synlett 1991; 809
    • 12b Kuroboshi M, Waki Y, Tanaka H. Synlett 2002; 637
    • 12c Kuroboshi M, Waki Y, Tanaka H. J. Org. Chem. 2003; 68: 3938
  • 13 Qi C, Sun X, Lu C, Yang J, Du Y, Wu H, Zhang X.-M. J. Organomet. Chem. 2009; 694: 2912
  • 14 Hennings DD, Iwama T, Rawal VH. Org. Lett. 1999; 1: 1205
    • 16a Mukhopadhyay S, Rothenberg G, Gitis D, Wiener H, Sasson Y. J. Chem. Soc., Perkin Trans. 2 1999; 2481
    • 16b Mukhopadhyay S, Rothenberg G, Qafisheh N, Sasson Y. Tetrahedron Lett. 2001; 42: 6117
  • 17 Iranpoor N, Firouzabadi H, Ahmadi Y. Eur. J. Org. Chem. 2012; 305
  • 18 Ram RN, Singh V. Tetrahedron Lett. 2006; 47: 7625
    • 19a Kuroboshi M, Kuwano A, Tanaka H. Electrochemistry (Tokyo, Jpn.) 2008; 76: 862
    • 19b Kuroboshi M, Kobayashi R, Nakagawa T, Tanaka H. Synlett 2009; 85
    • 19c Kuroboshi M, Yamamoto T, Tanaka H. Synlett 2013; 197
    • 19d Kuroboshi M, Kojima A, Tanaka H. Heterocycles 2017; 94: 2132
  • 20 Mukhopadhyay S, Rothenberg G, Wiener H, Sasson Y. Tetrahedron 1999; 55: 14763
    • 21a Lee PH, Seomoon D, Lee K. Org. Lett. 2005; 7: 343
    • 21b Lee K, Lee PH. Tetrahedron Lett. 2008; 49: 4302
    • 22a Venkatraman S, Li C.-J. Org. Lett. 1999; 1: 1133
    • 22b Mukhopadhyay S, Rothenberg G, Gitis D, Sasson Y. Org. Lett. 2000; 2: 211
    • 22c Li J.-H, Xie Y.-X, Yin D.-L. J. Org. Chem. 2003; 68: 9867
    • 22d Venkatraman S, Li C.-J. Tetrahedron Lett. 2000; 41: 4831
    • 22e Venkatraman S, Huang T, Li C.-J. Adv. Synth. Catal. 2002; 344: 399
  • 23 Zheng J, Lin S, Jiang B.-W, Marder TB, Yang Z. Can. J. Chem. 2012; 90: 138
    • 24a Buter J, Heijnen D, Vila C, Hornillos V, Otten E, Giannerini M, Minnaard AJ, Feringa BL. Angew. Chem. Int. Ed. 2016; 55: 3620
    • 24b Pinxterhuis EB, Visser P, Esser I, Gualtierotti J.-B, Feringa BL. Angew. Chem. Int. Ed. 2018; 57: 9452
  • 25 Gong X, Wu J, Meng Y, Zhang Y, Ye L.-W, Zhu C. Green Chem. 2019; 21: 995
  • 26 Zawisza AM, Muzart J. Tetrahedron Lett. 2007; 48: 6738
  • 27 Bi(het)aryls 2ay; General Procedure The appropriate (het)aryl halide 1 (0.5 mmol) was added to a mixture of Pd(OAc)2 (0.05 mmol, 10 mol%), sensory component (8 mg), and K2CO3 (1.0 mmol, 2 equiv) in DMF (10 mL), and the mixture was stirred and heated in an oil bath at 100 °C for 24 h. The mixture was then extracted with EtOAc (3 × 20 mL). The combined organic phases were dried (MgSO4), filtered, concentrated under reduced pressure, and purified by column chromatography (silica gel). 3,3′,4,4′,5,5′-Hexamethoxy-1,1′-biphenyl (2g) Prepared by the general procedure from 5-iodo-1,2,3-trimethoxybenzene (1g) and purified by column chromatography [silica gel, EtOAc–PE (1:3)] as a light-yellow solid; yield: 48 mg (58%); mp 127.2 °C. 1H NMR (400 MHz, CDCl3): δ = 6.72 (s, 4 H), 3.93 (s, 12 H), 3.89 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 153.4, 137.7, 137.6, 104.6, 61.0, 56.3. HRMS: m/z [M + H]+ calcd for C18H23O6: 335.1494; found: 335.1491.