Synlett 2022; 33(06): 503-512
DOI: 10.1055/s-0040-1719860
synpacts

Introduction to Spatial Anion Control for Direct C–H Arylation

,
Ilija Čorić
We acknowledge the funding of our research in the area of C–H activation by the Department of Chemistry, University of Zurich (UZH), the UZH Alumni – Fonds zur Förderung des akademischen Nachwuchses (FAN), the Dr. Helmut Legerlotz-Stiftung, the Prof. Dr. Hans E. Schmid-Stiftung, a Forschungskredit Postdoc UZH, the Foundation for Research in Science and the Humanities at the UZH, the Alfred­ Werner-Legat, the China Scholarship Council, and the Holcim Stiftung.


Abstract

C–H activation of functionally rich molecules without the need for directing groups promises shorter organic syntheses and late-stage diversification of molecules for drug discovery. We highlight recent examples of palladium-catalyzed nondirected functionalization of C–H bonds in arenes as limiting substrates with a focus on the development of the concept of spatial anion control for direct C–H arylation.

1 C–H Activation and the CMD Mechanism

2 Nondirected C–H Functionalizations of Arenes as Limiting Substrates

3 Nondirected C–H Arylation

4 Spatial Anion Control for Direct C–H Arylation

5 Coordination Chemistry with Spatial Anion Control

6 Conclusion



Publication History

Received: 18 October 2021

Accepted after revision: 23 November 2021

Article published online:
01 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
  • 2 Abrams DJ, Provencher PA, Sorensen EJ. Chem. Soc. Rev. 2018; 47: 8925
  • 3 Lam NY. S, Wu K, Yu J.-Q. Angew. Chem. Int. Ed. 2021; 60: 15767
  • 4 Aynetdinova D, Callens MC, Hicks HB, Poh CY. X, Shennan BD. A, Boyd AM, Lim ZH, Leitch JA, Dixon DJ. Chem. Soc. Rev. 2021; 50: 5517
  • 5 Guillemard L, Kaplaneris N, Ackermann L, Johansson MJ. Nat. Rev. Chem. 2021; 5: 522
  • 6 Dalton T, Faber T, Glorius F. ACS Cent. Sci. 2021; 7: 245
  • 7 Baudoin O. Angew. Chem. Int. Ed. 2020; 59: 17798
  • 8 Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
  • 9 Davies HM. L, Morton D. ACS Cent. Sci. 2017; 3: 936
  • 10 Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
  • 11 He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
  • 12 Meng G, Lam NY. S, Lucas EL, Saint-Denis TG, Verma P, Chekshin N, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 10571
  • 13 Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
  • 14 Wedi P, van Gemmeren M. Angew. Chem. Int. Ed. 2018; 57: 13016
  • 15 Mondal A, Wedi P, van Gemmeren M. In Remote C–H Bond Functionalizations: Methods and Strategies in Organic Synthesis . Maiti D, Guin S. Wiley-VCH; Weinheim: 2021: 191
  • 16 Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
  • 17 Dutta U, Maiti S, Bhattacharya T, Maiti D. Science 2021; 372: eabd5992
  • 18 Kancherla S, Jørgensen KB, Fernández-Ibáñez M. Á. Synthesis 2019; 51: 643
  • 19 Ping L, Chung DS, Bouffard J, Lee S.-g. Chem. Soc. Rev. 2017; 46: 4299
  • 20 Chen H, Farizyan M, van Gemmeren M. Eur. J. Org. Chem. 2020; 6318
  • 21 Hirano K, Miura M. In Remote C–H Bond Functionalizations: Methods and Strategies in Organic Synthesis . Maiti D, Guin S. Wiley-VCH; Weinheim: 2021: 253
  • 22 Lafrance M, Fagnou K. J. Am. Chem. Soc. 2006; 128: 16496
  • 23 Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
  • 24 Boutadla Y, Davies DL, Macgregor SA, Poblador-Bahamonde AI. Dalton Trans. 2009; 5820
  • 25 Ackermann L. Chem. Rev. 2011; 111: 1315
  • 26 Campeau L.-C, Parisien M, Leblanc M, Fagnou K. J. Am. Chem. Soc. 2004; 126: 9186
  • 27 Davies DL, Donald SM. A, Macgregor SA. J. Am. Chem. Soc. 2005; 127: 13754
  • 28 García-Cuadrado D, Braga AA. C, Maseras F, Echavarren AM. J. Am. Chem. Soc. 2006; 128: 1066
  • 29 Oxgaard J, Tenn WJ, Nielsen RJ, Periana RA, Goddard WA. Organometallics 2007; 26: 1565
  • 30 Winstein S, Traylor TG. J. Am. Chem. Soc. 1955; 77: 3747
  • 31 Fung CW, Khorramdel-Vahed M, Ranson RJ, Roberts RM. G. J. Chem. Soc., Perkin Trans. 2 1980; 267
  • 32 Davies DL, Macgregor SA, McMullin CL. Chem. Rev. 2017; 117: 8649
  • 33 Rogge T, Oliveira JC. A, Kuniyil R, Hu L, Ackermann L. ACS Catal. 2020; 10: 10551
  • 34 Carrow BP, Sampson J, Wang L. Isr. J. Chem. 2020; 60: 230
  • 35 Dhankhar J, González-Fernández E, Dong C.-C, Mukhopadhyay TK, Linden A, Čorić I. J. Am. Chem. Soc. 2020; 142: 19040
  • 36 Shilov AE, Shul’pin GB. Chem. Rev. 1997; 97: 2879
  • 37 Davies HM. L, Manning JR. Nature 2008; 451: 417
  • 38 Huang H, Lambert TH. Angew. Chem. Int. Ed. 2021; 60: 11163
  • 39 Berger F, Plutschack MB, Riegger J, Yu W, Speicher S, Ho M, Frank N, Ritter T. Nature 2019; 567: 223
  • 40 Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi NR, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
  • 41 Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
  • 42 Cheng C, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 592
  • 43 Genov GR, Mihai MT, Phipps RJ. In Remote C–H Bond Functionalizations: Methods and Strategies in Organic Synthesis . Maiti D, Guin S. Wiley-VCH; Weinheim: 2021: 169
  • 44 Boller TM, Murphy JM, Hapke M, Ishiyama T, Miyaura N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 14263
  • 45 Oeschger R, Su B, Yu I, Ehinger C, Romero E, He S, Hartwig J. Science 2020; 368: 736
  • 46 Lafrance M, Rowley CN, Woo TK, Fagnou K. J. Am. Chem. Soc. 2006; 128: 8754
  • 47 Tlahuext-Aca A, Lee SY, Sakamoto S, Hartwig JF. ACS Catal. 2021; 11: 1430
  • 48 Gorelsky SI, Lapointe D, Fagnou K. J. Am. Chem. Soc. 2008; 130: 10848
  • 49 Deprez NR, Kalyani D, Krause A, Sanford MS. J. Am. Chem. Soc. 2006; 128: 4972
  • 50 Storr TE, Greaney MF. Org. Lett. 2013; 15: 1410
  • 51 Mousseau JJ, Vallée F, Lorion MM, Charette AB. J. Am. Chem. Soc. 2010; 132: 14412
  • 52 Wang P, Verma P, Xia G, Shi J, Qiao JX, Tao S, Cheng PT. W, Poss MA, Farmer ME, Yeung K.-S, Yu J.-Q. Nature 2017; 551: 489
  • 53 Chen H, Wedi P, Meyer T, Tavakoli G, van Gemmeren M. Angew. Chem. Int. Ed. 2018; 57: 2497
  • 54 Naksomboon K, Valderas C, Gómez-Martínez M, Álvarez-Casao Y, Fernández-Ibáñez M. Á. ACS Catal. 2017; 7: 6342
  • 55 Moritanl I, Fujiwara Y. Tetrahedron Lett. 1967; 8: 1119
  • 56 Fujiwara Y, Moritani I, Matsuda M, Teranishi S. Tetrahedron Lett. 1968; 9: 633
  • 57 Fujiwara Y, Moritani I, Danno S, Asano R, Teranishi S. J. Am. Chem. Soc. 1969; 91: 7166
  • 58 Jia C, Lu W, Kitamura T, Fujiwara Y. Org. Lett. 1999; 1: 2097
  • 59 Li G, Yan Y, Zhang P, Xu X, Jin Z. ACS Catal. 2021; 11: 10460
  • 60 Carole WA, Colacot TJ. Chem. Eur. J. 2016; 22: 7686
  • 61 Baxter RD, Sale D, Engle KM, Yu J.-Q, Blackmond DG. J. Am. Chem. Soc. 2012; 134: 4600
  • 62 Zhao D, Xu P, Ritter T. Chem 2019; 5: 97
  • 63 Chen H, Mondal A, Wedi P, van Gemmeren M. ACS Catal. 2019; 9: 1979
  • 64 Liu L.-Y, Yeung K.-S, Yu J.-Q. Chem. Eur. J. 2019; 25: 2199
  • 65 Mondal A, Chen H, Flämig L, Wedi P, van Gemmeren M. J. Am. Chem. Soc. 2019; 141: 18662
  • 66 Campeau L.-C, Fagnou K. Chem. Commun. 2006; 1253
  • 67 Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
  • 68 Campeau L.-C, Hazari N. Organometallics 2019; 38: 3
  • 69 Liu L.-Y, Qiao JX, Yeung K.-S, Ewing WR, Yu J.-Q. J. Am. Chem. Soc. 2019; 141: 14870
  • 70 Wang X.-C, Gong W, Fang L.-Z, Zhu R.-Y, Li S, Engle KM, Yu J.-Q. Nature 2015; 519: 334
  • 71 Dong Z, Wang J, Dong G. J. Am. Chem. Soc. 2015; 137: 5887
  • 72 Shen P.-X, Wang X.-C, Wang P, Zhu R.-Y, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 11574
  • 73 Liu L.-Y, Qiao JX, Yeung K.-S, Ewing WR, Yu J.-Q. Angew. Chem. Int. Ed. 2020; 59: 13831
  • 74 Bayler A, Canty AJ, Ryan JH, Skelton BW, White AH. Inorg. Chem. Commun. 2000; 3: 575
  • 75 Canty AJ. Dalton Trans. 2009; 10409
  • 76 Canty AJ, Patel J, Rodemann T, Ryan JH, Skelton BW, White AH. Organometallics 2004; 23: 3466
  • 77 Della Ca’ N, Fontana M, Motti E, Catellani M. Acc. Chem. Res. 2016; 49: 1389
  • 78 Álvarez-Casao Y, van Slagmaat CA. M. R, Verzijl GK. M, Lefort L, Alsters PL, Fernández-Ibáñez M. Á. ChemCatChem 2018; 10: 2620
  • 79 Funaki K, Kawai H, Sato T, Oi S. Chem. Lett. 2011; 40: 1050
  • 80 Collins KD, Honeker R, Vásquez-Céspedes S, Tang D.-TD, Glorius F. Chem. Sci. 2015; 6: 1816
  • 81 Li R, Jiang L, Lu W. Organometallics 2006; 25: 5973
  • 82 Kawai H, Kobayashi Y, Oi S, Inoue Y. Chem. Commun. 2008; 1464
  • 83 Yang S.-D, Sun C.-L, Fang Z, Li B.-J, Li Y.-Z, Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 1473
  • 84 Ball LT, Lloyd-Jones GC, Russell CA. Science 2012; 337: 1644
  • 85 Ball LT, Lloyd-Jones GC, Russell CA. J. Am. Chem. Soc. 2014; 136: 254
  • 86 Bay KL, Yang Y.-F, Houk KN. J. Organomet. Chem. 2018; 864: 19
  • 87 Bhaskararao B, Singh S, Anand M, Verma P, Prakash P, Athira C, Malakar S, Schaefer HF, Sunoj RB. Chem. Sci. 2020; 11: 208
  • 88 Lee SY, Hartwig JF. J. Am. Chem. Soc. 2016; 138: 15278
  • 89 Lotz MD, Camasso NM, Canty AJ, Sanford MS. Organometallics 2017; 36: 165
  • 90 Whitaker D, Burés J, Larrosa I. J. Am. Chem. Soc. 2016; 138: 8384
  • 91 Yang Y.-F, Cheng G.-J, Liu P, Leow D, Sun T.-Y, Chen P, Zhang X, Yu J.-Q, Wu Y.-D, Houk KN. J. Am. Chem. Soc. 2014; 136: 344
  • 92 Bhattacharya T, Dutta S, Maiti D. ACS Catal. 2021; 11: 9702
  • 93 Panigrahi A, Whitaker D, Vitorica-Yrezabal IJ, Larrosa I. ACS Catal. 2020; 10: 2100
  • 94 Simonetti M, Perry GJ. P, Cambeiro XC, Juliá-Hernández F, Arokianathar JN, Larrosa I. J. Am. Chem. Soc. 2016; 138: 3596
  • 95 Filler R, Schure RM. J. Org. Chem. 1967; 32: 1217
  • 96 Regalado EL, Kozlowski MC, Curto JM, Ritter T, Campbell MG, Mazzotti AR, Hamper BC, Spilling CD, Mannino MP, Wan L, Yu J.-Q, Liu J, Welch CJ. Org. Biomol. Chem. 2014; 12: 2161
  • 97 Szabó KJ. J. Mol. Catal. A: Chem. 2010; 324: 56
  • 98 Wright LA, Hope EG, Solan GA, Cross WB, Singh K. Dalton Trans. 2015; 44: 6040
  • 99 Morohashi N, Iijima S, Akasaka K, Hattori T. New J. Chem. 2017; 41: 2231