Synlett 2023; 34(13): 1563-1572
DOI: 10.1055/s-0042-1751423
account

Development of New Reactions Driven by N–O Bond Cleavage: from O-Acyl Hydroxylamines to Tetrodotoxin

Jacob G. Robins
,
The project described was supported by award no. R35 GM118055 from the National Institute of General Medical Sciences.


Abstract

This Account describes new reactions that have been developed in the Johnson laboratories at UNC Chapel Hill enabled by considerations of N–O bond cleavage. Three main case studies are highlighted: the metal-catalyzed electrophilic amination of O-acyl hydroxyl amines, multihetero-Cope rearrangements driven by O–N bond breakage, and merged dearomatization/N=O cycloadditions for the synthesis of complex 4-aminocyclohexanols such as those found in the natural product tetrodotoxin.

1 Introduction

2 Electrophilic Amination

3 Multihetero-Cope Rearrangements

4 Progress toward a Total Synthesis of (–)-Tetrodotoxin

5 Conclusion



Publication History

Received: 13 January 2023

Accepted: 24 January 2023

Article published online:
23 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Current address: Jacob G. Robins, Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA.
  • 2 Erdik E, Ay M. Chem. Rev. 1989; 89: 1947
  • 3 Boche G, Mayer N, Bernheim M, Wagner K. Angew. Chem., Int. Ed. Engl. 1978; 17: 687
  • 4 Tsutsui H, Hayashi Y, Narasaka K. Chem. Lett. 1997; 26: 317
  • 5 Erdik E, Ay M. Synth. React. Inorg. Met.-Org. Chem. 1989; 19: 663
  • 6 Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
  • 7 Taylor SJ, Morken JP. J. Am. Chem. Soc. 1999; 121: 12202
  • 8 Berman AM, Johnson JS. J. Am. Chem. Soc. 2004; 126: 5680
  • 9 Berman AM, Johnson JS. Org. Synth. 2006; 83: 31
  • 10 Berman AM, Johnson JS. J. Org. Chem. 2005; 70: 364
  • 11 Berman AM, Johnson JS. J. Org. Chem. 2006; 71: 219
  • 12 Berman AM, Johnson JS. Synlett 2005; 1799
  • 13 Barker TJ, Jarvo ER. J. Am. Chem. Soc. 2009; 131: 15598
  • 14 Campbell MJ, Johnson JS. Org. Lett. 2007; 9: 1521
  • 15 Hoffmann RW, Hölzer B. J. Am. Chem. Soc. 2002; 124: 4204
  • 16 Beak P. Acc. Chem. Res. 1992; 25: 215
  • 17 Mohite SB, Bera M, Kumar V, Karpoormath R, Baba SB, Kumbhar AS. Top. Curr. Chem. 2022; 381: 4
  • 18 Hirano K, Miura M. J. Am. Chem. Soc. 2022; 144: 648
  • 19 Rucker RP, Whittaker AM, Dang H, Lalic G. J. Am. Chem. Soc. 2012; 134: 6571
  • 20 Rucker RP, Whittaker AM, Dang H, Lalic G. Angew. Chem. Int. Ed. 2012; 51: 3953
  • 21 Matsuda N, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2012; 51: 3642
  • 22 Matsuda N, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2012; 51: 11827
  • 23 Yoo EJ, Ma S, Mei T.-S, Chan KS. L, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 7652
  • 24 Dong Z, Dong G. J. Am. Chem. Soc. 2013; 135: 18350
  • 25 Dong Z, Lu G, Wang J, Liu P, Dong G. J. Am. Chem. Soc. 2018; 140: 8551
  • 26 Wu Z, Hu M, Li J, Wu W, Jiang H. Org. Biomol. Chem. 2021; 19: 3036
  • 27 Liu RY, Buchwald SL. Acc. Chem. Res. 2020; 53: 1229
  • 28 Kang T, Kim N, Cheng PT, Zhang H, Foo K, Engle KM. J. Am. Chem. Soc. 2021; 143: 13962
  • 29 van der Puyl VA, Derosa J, Engle KM. ACS Catal. 2019; 9: 224
  • 30 Feng G, Ku CK, Zhao J, Wang Q. J. Am. Chem. Soc. 2022; 144: 20463
  • 31 Hemric BN, Chen AW, Wang Q. J. Org. Chem. 2019; 84: 1468
  • 32 Hemric BN, Shen K, Wang Q. J. Am. Chem. Soc. 2016; 138: 5813
  • 33 Peterson LJ, Kirsch JK, Wolfe JP. Org. Lett. 2018; 20: 3513
  • 34 Shen K, Wang Q. Chem. Sci. 2015; 6: 4279
  • 35 Chen J, Zhu Y.-P, Li J.-H, Wang Q.-A. Chem. Commun. 2021; 57: 5215
  • 36 Malinowski JT, McCarver SJ, Johnson JS. Org. Lett. 2012; 14: 2878
  • 37 Cummins CH, Coates RM. J. Org. Chem. 1983; 48: 2070
  • 38 Tabolin AA, Ioffe SL. Chem. Rev. 2014; 114: 5426
  • 39 Lantos I, Zhang W.-Y. Tetrahedron Lett. 1994; 35: 5977
  • 40 Malinowski JT, Malow EJ, Johnson JS. Chem. Commun. 2012; 48: 7568
  • 41 Bartlett SL, Keiter KM, Zavesky BP, Johnson JS. Synthesis 2019; 51: 203
  • 42 Confalone PN, Huie EM. In Organic Reactions . John Wiley & Sons; Hoboken: 2004: 1
  • 43 Carosso S, Miller MJ. Org. Biomol. Chem. 2014; 12: 7445
  • 44 Makarova M, Rycek L, Hajicek J, Baidilov D, Hudlicky T. Angew. Chem. Int. Ed. 2019; 58: 18338
  • 45 Murakami K, Toma T, Fukuyama T, Yokoshima S. Angew. Chem. Int. Ed. 2020; 59: 6253
  • 46 Konrad DB, Rühmann K.-P, Ando H, Hetzler BE, Strassner N, Houk KN, Matsuura BS, Trauner D. Science 2022; 377: 411
  • 47 Good SN, Sharpe RJ, Johnson JS. J. Am. Chem. Soc. 2017; 139: 12422
  • 48 Good S. Dissertation 2018
  • 49 Robins JG, Johnson JS. Org. Lett. 2022; 24: 559
  • 50 Robins JG. Dissertation 2021
  • 51 Lin K.-C, Liao C.-C. Chem. Commun. 2001; 1624
  • 52 Shimizu H, Yoshimura A, Noguchi K, Nemykin VN, Zhdankin VV, Saito A. Beilstein J. Org. Chem. 2018; 14: 531
  • 53 Roche SP, Porco JA. Angew. Chem. Int. Ed. 2011; 50: 4068
  • 54 Chaiyaveij D, Cleary L, Batsanov AS, Marder TB, Shea KJ, Whiting A. Org. Lett. 2011; 13: 3442
  • 55 Frazier CP, Engelking JR, Read de Alaniz J. J. Am. Chem. Soc. 2011; 133: 10430
  • 56 Plietker B, Niggemann M. J. Org. Chem. 2005; 70: 2402