Synlett 2023; 34(14): 1655-1661
DOI: 10.1055/s-0042-1751443
synpacts

Photoexcited Nitroarenes as Anaerobic Oxygen Atom Transfer ­Reagents

Dan E. Wise
,
New York University Start Up Funds. American Chemical Society Petroleum Research Fund (65501-DNI1).


Abstract

Applications of photoexcited nitroarenes have been underdeveloped in organic synthesis. Since early reports on the direct excitation of nitroaromatics with harsh UV light, these synthetically useful reagents have not been tamed for use in modern synthetic chemistry. We have developed practical synthetic protocols for the anaerobic oxidation of hydrocarbon substrates using commercially available nitroarenes as photochemically activated oxidants under visible light. Using this approach, a wide variety of olefins are anaerobically cleaved to their corresponding carbonyls, and aliphatic C–H bonds are hydroxylated to give alcohols. The anaerobic reaction conditions enable oxidatively sensitive functional groups to be tolerated and the employment of visible light makes this method highly sustainable. Mechanistic studies support that the photoexcited nitroarene biradical intermediate is responsible for the oxygen atom transfer events.

1 Introduction

2 Alkene Cleavage Promoted by Photoexcited Nitroarenes

3 Photoinduced Nitroarene-Mediated C–H Hydroxylation

4 Conclusions



Publication History

Received: 04 March 2023

Accepted: 16 March 2023

Article published online:
21 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rajagopalan A, Lara M, Kroutil W. Adv. Synth. Catal. 2013; 355: 3321
  • 2 Van Ornum SG, Champeau RM, Pariza R. Chem. Rev. 2006; 106: 2990
  • 3 Cousin T, Chatel G, Kardos N, Andrioletti B, Draye M. Catal. Sci. Technol. 2019; 9: 5256
  • 4 Fisher TJ, Dussault PH. Tetrahedron 2017; 73: 4233
  • 5 Hida T, Kikuchi J, Kakinuma M, Nogusa H. Org. Process Res. Dev. 2010; 14: 1485
  • 6 Pappo R, Allen DS, Lemieux RU, Johnson WS. Can. J. Chem. 1955; 33: 478
  • 7 Travis BR, Narayan RS, Borhan B. J. Am. Chem. Soc. 2002; 124: 3824
  • 8 Lima CG. S, Lima T. deM, Duarte M, Jurberg ID, Paixão MW. ACS Catal. 2016; 6: 1389
  • 9 Deng Y, Wei XJ, Wang H, Sun Y, Noël T, Wang X. Angew. Chem. Int. Ed. 2017; 56: 832
  • 10 Huang Z, Guan R, Shanmugam M, Bennett EL, Robertson CM, Brookfield A, McInnes EJ. L, Xiao J. J. Am. Chem. Soc. 2021; 143: 10005
  • 11 Xie P, Xue C, Luo J, Shi S, Du D. Green Chem. 2021; 23: 5936
  • 12 Chen YX, He JT, Wu MC, Liu ZL, Tang K, Xia PJ, Chen K, Xiang HY, Chen XQ, Yang H. Org. Lett. 2022; 24: 3920
  • 13 Liang YF, Jiao N. Acc. Chem. Res. 2017; 50: 1640
  • 14 Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
  • 15 Enthaler S, Company A. Chem. Soc. Rev. 2011; 40: 4912
  • 16 Trammell R, D’Amore L, Cordova A, Polunin P, Xie N, Siegler MA, Belanzoni P, Swart M, Garcia-Bosch I. Inorg. Chem. 2019; 58: 7584
  • 17 Li Z, Park HS, Qiao JX, Yeung KS, Yu JQ. J. Am. Chem. Soc. 2022; 144: 18109
  • 18 Borovik AS. Chem. Soc. Rev. 2011; 40: 1870
  • 19 Ortiz deMontellano P. R. Chem. Rev. 2010; 110: 932
  • 20 Lan Y, Zou L, Cao Y, Houk KN. J. Phys. Chem. A 2011; 115: 13906
  • 21 Wang H, Wang Y, Chen X, Mou C, Yu S, Chai H, Jin Z, Chi YR. Org. Lett. 2019; 21: 7440
  • 22 Bhunia A, Bergander K, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2021; 60: 8313
  • 23 Dearden JC, Forbes WF. Can. J. Chem. 1955; 37: 1145
  • 24 Splitter JS, Calvin M. J. Org. Chem. 1955; 20: 1086
  • 25 Hurley R, Testa AC. J. Am. Chem. Soc. 1966; 88: 4330
  • 26 Büchi G, Ayer DE. J. Am. Chem. Soc. 1956; 78: 689
  • 27 Charlton JL, de Mayo P. Can. J. Chem. 1968; 46: 1041
  • 28 Charlton JL, Liao CC, de Mayo P. J. Am. Chem. Soc. 1971; 93: 2463
  • 29 Leitich J. Angew. Chem., Int. Ed. Engl. 1976; 15: 372
  • 30 Döpp D, Müller D. Recl. Trav. Chim. Pays-Bas 1979; 98: 297
  • 31 Okada K, Saito Y, Oda M. J. Chem. Soc., Chem. Commun. 1992; 1731
  • 32 Wise DE, Gogarnoiu ES, Duke AD, Paolillo JM, Vacala TL, Hussain WA, Parasram M. J. Am. Chem. Soc. 2022; 144: 15437
  • 33 Paolillo JM, Duke AD, Gogarnoiu ES, Wise DE, Parasram M. J. Am. Chem. Soc. 2023; 145: 2794
  • 34 Wang B, Ma J, Ren H, Lu S, Xu J, Liang Y, Lu C, Yan H. Chin. Chem. Lett. 2022; 33: 2420
  • 35 Ruffoni A, Hampton C, Simonetti M, Leonori D. Nature 2022; 610: 81
  • 36 Huisgen R. J. Org. Chem. 1976; 41: 403
  • 37 Hampton C, Simonetti M, Leonori D. Angew. Chem. Int. Ed. 2023; 62: e202214508
  • 38 Weller JW, Hamilton GA. J. Chem. Soc. D 1970; 1390
  • 39 Ghosh S, Kumar G, Naveen Naveen, Pradhan S, Chatterjee I. Chem. Commun. 2019; 55: 13590
  • 40 D’Auria M, Esposito V, Mauriello G. Tetrahedron 1996; 52: 14253
  • 41 Yong PK, Banerjee A. Org. Lett. 2005; 7: 2485
  • 42 Mewes JM, Jovanović V, Marian CM, Dreuw A. Phys. Chem. Chem. Phys. 2014; 16: 12393
  • 43 Dantignana V, Milan M, Cussó O, Company A, Bietti M, Costas M. ACS Cent. Sci. 2017; 3: 1350
  • 44 Liang YF, Jiao N. Angew. Chem. Int. Ed. 2014; 53: 548