J Pediatr Genet
DOI: 10.1055/s-0042-1757888
Original Article

Identifying Genetic Etiology in Patients with Intellectual Disability: An Experience in Public Health Services in Northeastern Brazil

1   Laboratory of Human Genetics and Mutagenesis, Institute of Biology, Federal University Bahia (UFBA), Salvador, Bahia, Brazil
,
1   Laboratory of Human Genetics and Mutagenesis, Institute of Biology, Federal University Bahia (UFBA), Salvador, Bahia, Brazil
,
Paula Monique Leite Pitanga
1   Laboratory of Human Genetics and Mutagenesis, Institute of Biology, Federal University Bahia (UFBA), Salvador, Bahia, Brazil
,
Erlane Marques Ribeiro
2   Faculty of Medicine Estacio of Juazeiro Norte, Estacio-FMJ, Hospital Infantil Albert Sabin, Fortaleza, Ceará, Brazil
,
Maria Juliana Rodovalho Doriqui
3   Association of Parents and Friends of Exceptional Children (APAE), São Luiz, Maranhão, Brazil
,
Maria Betânia Pereira Toralles
4   Medical School of Medicine, Medical Genetic Service – Edgard Santos Teaching Hospital/Federal University of Bahia, Salvador, Bahia, Brazil
,
Bianca Arcaro Topázio
1   Laboratory of Human Genetics and Mutagenesis, Institute of Biology, Federal University Bahia (UFBA), Salvador, Bahia, Brazil
,
Jéssica Fernandes dos Santos
1   Laboratory of Human Genetics and Mutagenesis, Institute of Biology, Federal University Bahia (UFBA), Salvador, Bahia, Brazil
,
Renata Lúcia Leite Ferreira de Lima
1   Laboratory of Human Genetics and Mutagenesis, Institute of Biology, Federal University Bahia (UFBA), Salvador, Bahia, Brazil
,
Leslie Domenici Kulikowski
5   Department of Pathology, Cytogenomics Laboratory – LIM 03, University of São Paulo, São Paulo, Brazil
,
Angelina Xavier Acosta
4   Medical School of Medicine, Medical Genetic Service – Edgard Santos Teaching Hospital/Federal University of Bahia, Salvador, Bahia, Brazil
› Author Affiliations
Funding This study was supported by funding from CNPq (National Council of Technological and Scientific Development).

Abstract

Intellectual disability (ID) is considered a common neuropsychiatric disorder that affects up to 3% of the population. The etiologic origin of ID may be genetic, environmental, and multifactorial. Chromosomopathies are relatively common among the genetic causes of ID, especially in the most severe cases and those associated with dysmorphic features. Currently, the application of new molecular cytogenetics technologies has increasingly allowed the identification of microdeletions, microduplications, and unbalanced translocations as causes of ID. The objective of this study was to investigate the etiology of ID in patients admitted to a public hospital in Northeastern Brazil. In total, 119 patients with ID who had normal karyotypes and fragile X exams participated in this study. The patients were initially physically examined for microdeletion syndromes and then tested using fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA), methylation-sensitive polymerase chain reaction (MS-PCR), and chromosome microarray analysis (CMA), according to clinical suspicion. Patients with no diagnoses after FISH, MLPA, and/or MS-PCR evaluations were subsequently tested by CMA. The rate of etiologic diagnoses of ID in the current study was 28%. FISH diagnosed 25 out of 79 tested (31%), MLPA diagnosed 26 out of 79 tested (32%), MS-PCR diagnosed 7 out of 20 tested (35%), and the single nucleotide polymorphism array diagnosed 6 out of 27 tested (22%). Although the CMA is the most complete and recommended tool for the diagnosis of microdeletions, microduplications, and unbalance translocations in patients with ID, FISH, MLPA, and MS-PCR testing can be used as the first tests for specific syndromes, as long as the patients are first physically screened clinically, especially in the public health networks system in Brazil, where resources are scarce.

Statement of Ethics

This study was approved by the Ethics Commission of the Federal University of Bahia and informed written consent was obtained from parents and guardians of participating subjects.


Author Contributions

A.F.L.C., R.L.L.F.L., and A.X.A. contributed to the design of the work, genotype-phenotype correlation, and writing the manuscript. E.M.R., M.J.R.D., and M.B.P.T. performed the clinical evaluation of the patient. E.S.A., P.M.L.P., B.A.T., L.K.D., and J.F.S. contributed to the analysis and interpretation of the genomic data. All authors contributed to the literature review, discussed the results, and provided critical feedback on the manuscript.




Publication History

Received: 07 January 2022

Accepted: 09 September 2022

Article published online:
14 November 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Vasconcelos MM. Retardo mental. J Pediatr (Rio J) 2004; 80 (Suppl. 02) 71-82
  • 2 Sabbag ARC, Rocha BG, Silva LR, Germano CMR, Junior EM, Melo DG. Identifying microdeletion syndromes in patients with intellectual disability using molecular genetic testing: an example for the Brazilian Public Health Care System. Am J Public Health Res 2013; 1 (04) 86-92
  • 3 Grayton HM, Fernandes C, Rujescu D, Collier DA. Copy number variations in neurodevelopmental disorders. Prog Neurobiol 2012; 99 (01) 81-91
  • 4 Morrow EM. Genomic copy number variation in disorders of cognitive development. J Am Acad Child Adolesc Psychiatry 2010; 49 (11) 1091-1104
  • 5 Regier DA, Friedman JM, Marra CA. Value for money? Array genomic hybridization for diagnostic testing for genetic causes of intellectual disability. Am J Hum Genet 2010; 86 (05) 765-772
  • 6 De Vries BB, Winter R, Schinzel A, van Ravenswaaij-Arts C. Telomeres: a diagnosis at the end of the chromosomes. J Med Genet 2003; 40 (06) 385-398
  • 7 Stankiewicz P, Lupski JR. Genome architecture, rearrangements and genomic disorders. Trends Genet 2002; 18 (02) 74-82
  • 8 Miller DT, Adam MP, Aradhya S. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010; 86 (05) 749-764
  • 9 Shevell M, Ashwal S, Donley D. , et al; Practice parameter: evaluation of the child with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and The Practice Committee of the Child Neurology Society. Neurology 2003; 60 (03) 367-380
  • 10 Friedman JM, Baross A, Delaney AD. et al. Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am J Hum Genet 2006; 79 (03) 500-513
  • 11 Rosenberg C, Knijnenburg J, Bakker E. et al. Array-CGH detection of micro rearrangements in mentally retarded individuals: clinical significance of imbalances present both in affected children and normal parents. J Med Genet 2006; 43 (02) 180-186
  • 12 Gijsbers ACJ, Lew JYK, Bosch CAJ. et al. A new diagnostic workflow for patients with mental retardation and/or multiple congenital abnormalities: test arrays first. Eur J Hum Genet 2009; 17 (11) 1394-1402
  • 13 Schluth-Bolard C, Delobel B, Sanlaville D. et al. Cryptic genomic imbalances in de novo and inherited apparently balanced chromosomal rearrangements: array CGH study of 47 unrelated cases. Eur J Med Genet 2009; 52 (05) 291-296
  • 14 Cooper GM, Coe BP, Girirajan S. et al. A copy number variation morbidity map of developmental delay. Nat Genet 2011; 43 (09) 838-846
  • 15 Trost B, Walker S, Wang Z. et al. A comprehensive workflow for read depth-based identification of copy-number variation from whole-genome sequence data. Am J Hum Genet 2018; 102 (01) 142-155
  • 16 de Vries BB, White SM, Knight SJL. et al. Clinical studies on submicroscopic subtelomeric rearrangements: a checklist. J Med Genet 2001; 38 (03) 145-150
  • 17 Pinkel D, Gray JW, Trask B, van den Engh G, Fuscoe J, van Dekken H. Cytogenetic analysis by in situ hybridization with fluorescently labeled nucleic acid probes. Cold Spring Harb Symp Quant Biol 1986; 51 (Pt 1): 151-157
  • 18 Kosaki K, McGinniss MJ, Veraksa AN, McGinnis WJ, Jones KL. Prader-Willi and Angelman syndromes: diagnosis with a bisulfite-treated methylation-specific PCR method. Am J Med Genet 1997; 73 (03) 308-313
  • 19 Dos Santos JF, Mota LR, Rocha PHSA, Ferreira de Lima RLL. A modified MS-PCR approach to diagnose patients with Prader-Willi and Angelman syndrome. Mol Biol Rep 2016; 43 (11) 1221-1225
  • 20 Riggs ER, Andersen EF, Cherry AM. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med 2020; 22 (02) 245-257
  • 21 Santos JFD, Acosta AX, Scheibler GG. et al. Case of 15q26-qter deletion associated with a Prader-Willi phenotype. Eur J Med Genet 2020; 63 (08) 103955
  • 22 Mohan S, Koshy T, Vekatachalam P. et al. Subtelomeric rearrangements in Indian children with idiopathic intellectual disability/developmental delay: Frequency estimation & clinical correlation using fluorescence in situ hybridization (FISH). Indian J Med Res 2016; 144 (02) 206-214
  • 23 Jehee FS, Takamori JT, Medeiros PFV. et al. Using a combination of MLPA kits to detect chromosomal imbalances in patients with multiple congenital anomalies and mental retardation is a valuable choice for developing countries. Eur J Med Genet 2011; 54 (04) e425-e432
  • 24 Resta N, Memo L. Chromosomal microarray (CMA) analysis in infants with congenital anomalies: when is it really helpful?. J Matern Fetal Neonatal Med 2012; 25 (4, Suppl 4) 124-126
  • 25 Halder A, Jain M, Chaudhary I, Gupta N, Kabra M. Fluorescence in situ hybridization (FISH) using non-commercial probes in the diagnosis of clinically suspected microdeletion syndromes. Indian J Med Res 2013; 138: 135-142
  • 26 Baroncini A, Rivieri F, Capucci A. et al. FISH screening for subtelomeric rearrangements in 219 patients with idiopathic mental retardation and normal karyotype. Eur J Med Genet 2005; 48 (04) 388-396
  • 27 Morris CA, Thomas IT, Greenberg F. Williams syndrome: autosomal dominant inheritance. Am J Med Genet 1993; 47 (04) 478-481
  • 28 Félix T, Vairo FP, Leite JCL. Síndrome de microdeleção cromossômica. In: Maluf SW, Riegel M. . e cols. Citogenética Humana. Artmed; 2011: 286-293
  • 29 Dutra RL, Pieri PdeC, Teixeira ACD, Honjo RS, Bertola DR, Kim CA. Detection of deletions at 7q11.23 in Williams-Beuren syndrome by polymorphic markers. Clinics (São Paulo) 2011; 66 (06) 959-964
  • 30 Pérez Jurado LA, Peoples R, Kaplan P, Hamel BC, Francke U. Molecular definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin effects on growth. Am J Hum Genet 1996; 59 (04) 781-792
  • 31 Peoples R, Franke Y, Wang YK. et al. A physical map, including a BAC/PAC clone contig, of the Williams-Beuren syndrome—deletion region at 7q11.23. Am J Hum Genet 2000; 66 (01) 47-68
  • 32 Smoot L, Zhang H, Klaiman C, Schultz R, Pober B. Medical overview and genetics of Williams-Beuren syndrome. Prog Pediatr Cardiol 2005; 20: 195-205
  • 33 Pober BR. Williams-Beuren syndrome. N Engl J Med 2010; 362 (03) 239-252
  • 34 Honjo RS, Dutra RL, Nunes MM. et al. Atypical deletion in Williams-Beuren syndrome critical region detected by MLPA in a patient with supravalvular aortic stenosis and learning difficulty. J Genet Genomics 2012; 39 (10) 571-574
  • 35 Dutra RL, Honjo RS, Kulikowski LD. et al. Copy number variation in Williams-Beuren syndrome: suitable diagnostic strategy for developing countries. BMC Res Notes 2012; 5: 13
  • 36 Somerville MJ, Mervis CB, Young EJ. et al. Severe expressive-language delay related to duplication of the Williams-Beuren locus. N Engl J Med 2005; 353 (16) 1694-1701
  • 37 Kriek M, White SJ, Szuhai K. et al. Copy number variation in regions flanked (or unflanked) by duplicons among patients with developmental delay and/or congenital malformations; detection of reciprocal and partial Williams-Beuren duplications. Eur J Hum Genet 2006; 14 (02) 180-189
  • 38 Depienne C, Heron D, Betancur C. et al. Autism, language delay and mental retardation in a patient with 7q11 duplication. J Med Genet 2007; 44 (07) 452-458
  • 39 Berg JS, Brunetti-Pierri N, Peters SU. et al. Speech delay and autism spectrum behaviors are frequently associated with duplication of the 7q11.23 Williams-Beuren syndrome region. Genet Med 2007; 9 (07) 427-441
  • 40 Torniero C, Dalla Bernardina B, Novara F. et al. Dysmorphic features, simplified gyral pattern and 7q11.23 duplication reciprocal to the Williams-Beuren deletion. Eur J Hum Genet 2008; 16 (08) 880-887
  • 41 Orellana C, Bernabeu J, Monfort S. et al. Duplication of the Williams-Beuren critical region: case report and further delineation of the phenotypic spectrum. J Med Genet 2008; 45 (03) 187-189
  • 42 Beunders G, van de Kamp JM, Veenhoven RH, van Hagen JM, Nieuwint AW, Sistermans EA. A triplication of the Williams-Beuren syndrome region in a patient with mental retardation, a severe expressive language delay, behavioural problems and dysmorphisms. J Med Genet 2010; 47 (04) 271-275
  • 43 Dixit A, McKee S, Mansour S. et al. 7q11.23 Microduplication: a recognizable phenotype. Clin Genet 2013; 83 (02) 155-161
  • 44 Merritt JL, Lindor NM. Further clinical description of duplication of Williams-Beuren region presenting with congenital glaucoma and brachycephaly. Am J Med Genet A 2008; 146A (08) 1055-1058
  • 45 Van der Aa N, Rooms L, Vandeweyer G. et al. Fourteen new cases contribute to the characterization of the 7q11.23 microduplication syndrome. Eur J Med Genet 2009; 52 (2-3): 94-100
  • 46 Ramsden SC, Clayton-Smith J, Birch R, Buiting K. Practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes. BMC Med Genet 2010; 11: 70
  • 47 Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. Genet Med 2012; 14 (01) 10-26
  • 48 Williams CA, Zori RT, Stone JW, Gray BA, Cantu ES, Ostrer H. Maternal origin of 15q11-13 deletions in Angelman syndrome suggests a role for genomic imprinting. Am J Med Genet 1990; 35 (03) 350-353
  • 49 Cassidy SB, Schwartz S. Prader-Willi and Angelman syndromes. Disorders of genomic imprinting. Medicine (Baltimore) 1998; 77 (02) 140-151
  • 50 Lüdecke HJ, Wagner MJ, Nardmann J. et al. Molecular dissection of a contiguous gene syndrome: localization of the genes involved in the Langer-Giedion syndrome. Hum Mol Genet 1995; 4 (01) 31-36
  • 51 Giedion A. Die periphere dysostose (PD). Ein Sammelbegriff. Fortschr Röntgenstr 1969; 110: 507-599
  • 52 Battaglia A, Carey JC, Cederholm P, Viskochil D, Brothman A. Natural history experience with 11 cases of Wolf-Hirschhorn syndrome. Am J Hum Genet 1996; 95: A36
  • 53 Kaminsky EB, Kaul V, Paschall J. et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet Med 2011; 13 (09) 777-784
  • 54 Penna SDJ. Molecular cytogenetics II: PCR-based diagnosis of chromosomal deletions and microdeletions syndromes. Genet Mol Biol 1998; 21 (04) 453-460
  • 55 Shaffer LG. American College of Medical Genetics Professional Practice and Guidelines Committee. American College of Medical Genetics guideline on the cytogenetic evaluation of the individual with developmental delay or mental retardation. Genet Med 2005; 7 (09) 650-654
  • 56 Yagi H, Furutani Y, Hamada H. et al. Role of TBX1 in human del22q11.2 syndrome. Lancet 2003; 362 (9393): 1366-1373
  • 57 Phelan K, McDermid HE. The 22q13.3 Deletion Syndrome (Phelan-McDermid Syndrome). Mol Syndromol 2012; 2 (3-5): 186-201
  • 58 Soorya L, Kolevzon A, Zweifach J. et al. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol Autism 2013; 4 (01) 18
  • 59 Bartsch C, Aslan M, Köhler J. et al. Duplication dup(1)(q32q44) detected by comparative genomic hybridization (CGH): further delineation of trisomies 1q. Fetal Diagn Ther 2001; 16 (05) 265-273
  • 60 Kulikowiski LD, Bellucco TS, Nogueira IS. et al. Pure duplication 1q41-qter: further delineation of trisomy 1q syndromes. Am J Hum Genet 2008; 146A: 2663-2667
  • 61 Baialardo EM, Torrado Mdel V, Barreiro CZ, Gallego MS. Partial distal 5p trisomy resulting from paternal translocation (5;15)(p15.1;p13) in a boy with no mental retardation. Clin Dysmorphol 2003; 12 (04) 257-259
  • 62 de Carvalho AF, da Silva Bellucco FT, Kulikowski LD, Toralles MB, Melaragno MI. Partial 5p monosomy or trisomy in 11 patients from a family with a t(5;15)(p13.3;p12) translocation. Hum Genet 2008; 124 (04) 387-392
  • 63 Eudy JD, Pickering DL, Lutz R, Plati K, Dave BJ, Olney AH, Sanger WG. 18q22.318q23 deletion syndrome and cleft palate. Am J Med Genet A 2010; 5152A (04) 1046-1048
  • 64 Bonaglia MC, Giorda R, Zanini S. A new patient with a terminal de novo 2p25.3 deletion of 1.9 Mb associated with early-onset of obesity, intellectual disabilities and hyperkinetic disorder. Mol Cytogenet 2014; 7: 53
  • 65 Xu W, Ahmad A, Dagenais S, Iyer RK, Innis JW. Chromosome 4q deletion syndrome: narrowing the cardiovascular critical region to 4q32.2-q34.3. Am J Med Genet A 2012; 158A (03) 635-640
  • 66 Di Bartolo DL, El Naggar M, Owen R. et al. Characterization of a complex rearrangement involving duplication and deletion of 9p in an infant with craniofacial dysmorphism and cardiac anomalies. Mol Cytogenet 2012; 5 (01) 31
  • 67 Chong WWS, Lo IF, Lam ST. et al. Performance of chromosomal microarray for patients with intellectual disabilities/developmental delay, autism, and multiple congenital anomalies in a Chinese cohort. Mol Cytogenet 2014; 7: 34
  • 68 Hochstenbach R, van Binsbergen E, Engelen J. et al. Array analysis and karyotyping: workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands. Eur J Med Genet 2009; 52 (04) 161-169