Aktuelle Neurologie 2017; 44(03): 170-179
DOI: 10.1055/s-0043-101907
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Aszensionshypothese beim idiopathischen Parkinson-Syndrom

Ascension Hypothesis in Idiopathic Parkinsonʼs Disease
Lisa Klingelhoefer
Klinik und Poliklinik für Neurologie des Universitätsklinikums Carl Gustav Carus, Technische Universität Dresden
,
Heinz Reichmann
Klinik und Poliklinik für Neurologie des Universitätsklinikums Carl Gustav Carus, Technische Universität Dresden
› Author Affiliations
Further Information

Publication History

Publication Date:
25 April 2017 (online)

Zusammenfassung

Patienten mit idiopathischem Parkinson-Syndrom (IPS) durchlaufen verschiedene klinische Stadien, wobei nicht-motorische Symptome insbesondere die prodromale Phase der Parkinson-Erkrankung bestimmen, während die motorischen Kardinalsymptome wie die Bradykinese mit Rigidität, Ruhetremor oder posturaler Instabilität zwingend für die klinische Diagnosestellung des IPS notwendig sind. Wichtige frühe nicht-motorische Symptome sind die Riechstörung, Obstipation, Depression und Schlafstörungen. Entsprechend des klinischen Verlaufs postulieren die Braak-Stadien, dass der neuropathologische Prozess der Parkinson-Erkrankung im enterischen Nervensystem (ENS) des gastrointestinalen Systems und im Bulbus olfactorius beginnt. Es kommt anschließend durch transsynaptischen Zell-zu-Zell-Transport zu einem rostrokraniellen Aufstieg der Parkinson-Pathologie via sympathisches und parasympathisches Nervensystem. Mit Erreichen des zentralen Nervensystems treten die für das IPS pathognomischen Veränderungen mit selektiver Degeneration der dopaminergen Neurone in der Substantia nigra pars compacta, dem Nachweis von Lewy-Körperchen, eine reaktive Gliose und eine fortschreitende zentrale Neurodegeneration auf. Die diesen Hypothesen zugrunde liegenden klinischen und pathologischen sowie Tierversuchsstudien werden in diesem Übersichtsartikel dargestellt. So konnte α-Synuclein als die Parkinson-spezifische Pathologie im Bulbus olfactorius, im ENS, in der Glandula submandibularis, im intermediolateralen Nucleus des Rückenmarks und im dorsalen motorischen Nucleus des Nervus vagus nachgewiesen werden. Mittels eines Tiermodelles, bei dem Mäuse chronisch intragastral das Pestizid Rotenon erhalten, konnten wir für das IPS klassische pathologische Veränderungen, die Entwicklung von Parkinson-Symptomen und auch einen spezifischen zeitlichen und räumlichen Ablauf der Parkinson-Pathologie auslösen.

Abstract

Different clinical stages are observed in idiopathic Parkinsonʼs disease (PD). Non-motor symptoms define the prodromal period of PD in particular whereas motor symptoms such as bradykinesia with rigidity, resting tremor or postural instability are mandatory for the diagnosis of PD. Important non-motor symptoms are olfactory dysfunction, constipation, depression and sleep disturbances. Corresponding to the clinical course of PD, the Braak staging system postulates that the neuropathological process of PD starts in the enteric nervous system (ENS) of the gut and in the olfactory bulb. From there, Parkinson pathology spreads by transsynaptic cell-to-cell transfer via the sympathetic and parasympathetic nervous system in a rostrocranial direction. When the central nervous system is reached, the typical neuropathological changes of PD with selective degeneration of dopaminergic neurons of the Substantia nigra pars compacta, the formation of Lewy bodies, reactive gliosis and progressive central neurodegeneration appear. Evidence of clinical, pathological and animal studies supporting these hypotheses are summarised in this review article. α-synuclein as PD specific pathology was found in the olfactory bulb, the ENS, the submandibular gland, the intermediolateral nucleus of the spinal cord and the dorsal motor nucleus of the vagus nerve. In an animal model, in which mice are treated with the pesticide rotenone chronically and intragastrically, we could almost completely reproduce the typical pathological and clinical features of PD as well as their development in a chronological and regional sequence.

 
  • Literatur

  • 1 Hughes AJ, Daniel SE, Kilford L. et al. Accuracy of clinical diagnosis of idiopathic Parkinsonʼs disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55: 181-184
  • 2 Postuma RB, Berg D, Stern M. et al. MDS clinical diagnostic criteria for Parkinsonʼs disease. Mov Disord 2015; 30: 1591-1601
  • 3 Berg D, Postuma RB, Adler CH. et al. MDS research criteria for prodromal Parkinsonʼs disease. Mov Disord 2015; 30: 1600-1611
  • 4 Haehner A, Hummel T, Reichmann H. Olfactory dysfunction as a diagnostic marker for Parkinsonʼs disease. Expert Rev Neurother 2009; 9: 1773-1779
  • 5 Doty RL. Olfactory dysfunction in Parkinson disease. Nat Rev Neurol 2012; 8: 329-339
  • 6 Iranzo A, Molinuevo JL, Santamaria J. et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol 2006; 5: 572-577
  • 7 Stiasny-Kolster K, Doerr Y, Moller JC. et al. Combination of ‘idiopathic’ REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain 2005; 128: 126-137
  • 8 Cersosimo MG, Raina GB, Pecci C. et al. Gastrointestinal manifestations in Parkinsonʼs disease: prevalence and occurrence before motor symptoms. J Neurol 2013; 260: 1332-1338
  • 9 Jost WH. Gastrointestinal dysfunction in Parkinsonʼs disease. J Neurol Sci 2010; 289: 69-73
  • 10 Reichmann H, Schneider C, Lohle M. Non-motor features of Parkinsonʼs disease: depression and dementia. Parkinsonism Relat Disord 2009; 15 (Suppl. 03) 87-92
  • 11 Schrag A, Horsfall L, Walters K. et al. Prediagnostic presentations of Parkinsonʼs disease in primary care: a case-control study. Lancet Neurol 2015; 14: 57-64
  • 12 Pfeiffer RF. Gastrointestinal dysfunction in Parkinsonʼs disease. Lancet Neurol 2003; 2: 107-116
  • 13 Rodriguez-Violante M, Cervantes-Arriaga A, Villar-Velarde A. et al. Prevalence of non-motor dysfunction among Parkinsonʼs disease patients from a tertiary referral center in Mexico City. Clin Neurol Neurosurg 2010; 112: 883-885
  • 14 Martinez-Martin P. The importance of non-motor disturbances to quality of life in Parkinsonʼs disease. J Neurol Sci 2011; 310: 12-16
  • 15 Chaudhuri KR, Martinez-Martin P, Schapira AH. et al. International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinsonʼs disease: the NMSQuest study. Mov Disord 2006; 21: 916-923
  • 16 Martinez-Martin P, Schapira AH, Stocchi F. et al. Prevalence of nonmotor symptoms in Parkinsonʼs disease in an international setting; study using nonmotor symptoms questionnaire in 545 patients. Mov Disord 2007; 22: 1623-1629
  • 17 Pfeiffer RF. Gastrointestinal dysfunction in Parkinsonʼs disease. Parkinsonism Relat Disord 2011; 17: 10-15
  • 18 Jost WH. Gastrointestinal motility problems in patients with Parkinsonʼs disease. Effects of antiparkinsonian treatment and guidelines for management. Drugs Aging 1997; 10: 249-258
  • 19 Barone P, Antonini A, Colosimo C. et al. The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinsonʼs disease. Mov Disord 2009; 24: 1641-1649
  • 20 Edwards LL, Pfeiffer RF, Quigley EM. et al. Gastrointestinal symptoms in Parkinsonʼs disease. Mov Disord 1991; 6: 151-156
  • 21 Mollenhauer B, Trautmann E, Sixel-Doring F. et al. Nonmotor and diagnostic findings in subjects with de novo Parkinson disease of the DeNoPa cohort. Neurology 2013; 81: 1226-1234
  • 22 Abbott RD, Petrovitch H, White LR. et al. Frequency of bowel movements and the future risk of Parkinsonʼs disease. Neurology 2001; 57: 456-462
  • 23 Savica R, Carlin JM, Grossardt BR. et al. Medical records documentation of constipation preceding Parkinson disease: A case-control study. Neurology 2009; 73: 1752-1758
  • 24 Adams-Carr KL, Bestwick JP, Shribman S. et al. Constipation preceding Parkinsonʼs disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2015; 87: 710-716
  • 25 Gjerloff T, Fedorova T, Knudsen K. et al. Imaging acetylcholinesterase density in peripheral organs in Parkinsonʼs disease with 11C-donepezil PET. Brain 2015; 138: 653-663
  • 26 Cersosimo MG, Benarroch EE. Neural control of the gastrointestinal tract: implications for Parkinson disease. Mov Disord 2008; 23: 1065-1075
  • 27 Tissingh G, Berendse HW, Bergmans P. et al. Loss of olfaction in de novo and treated Parkinsonʼs disease: possible implications for early diagnosis. Mov Disord 2001; 16: 41-46
  • 28 Chaudhuri KR, Healy DG, Schapira AH. Non-motor symptoms of Parkinsonʼs disease: diagnosis and management. Lancet Neurol 2006; 5: 235-245
  • 29 Ponsen MM, Stoffers D, Booij J. et al. Idiopathic hyposmia as a preclinical sign of Parkinsonʼs disease. Ann Neurol 2004; 56: 173-181
  • 30 Spillantini MG, Schmidt ML, Lee VM. et al. Alpha-synuclein in Lewy bodies. Nature 1997; 388: 839-840
  • 31 Gaspar P, Gray F. Dementia in idiopathic Parkinsonʼs disease. A neuropathological study of 32 cases. Acta Neuropathol 1984; 64: 43-52
  • 32 Braak H, Braak E, Yilmazer D. et al. Pattern of brain destruction in Parkinsonʼs and Alzheimer's diseases. J Neural Transm 1996; 103: 455-490
  • 33 Braak H, Del Tredici K, Rub U. et al. Staging of brain pathology related to sporadic Parkinsonʼs disease. Neurobiol Aging 2003; 24: 197-211
  • 34 Braak H, Ghebremedhin E, Rub U. et al. Stages in the development of Parkinsonʼs disease-related pathology. Cell Tissue Res 2004; 318: 121-134
  • 35 Del Tredici K, Rub U, De Vos RA. et al. Where does parkinson disease pathology begin in the brain?. J Neuropathol Exp Neurol 2002; 61: 413-426
  • 36 Del Tredici K, Braak H. Review: Sporadic Parkinsonʼs disease: development and distribution of alpha-synuclein pathology. Neuropathol Appl Neurobiol 2016; 42: 33-50
  • 37 Del Tredici K, Braak H. Spinal cord lesions in sporadic Parkinsonʼs disease. Acta Neuropathol 2012; 124: 643-664
  • 38 Braak H, Sastre M, Bohl JR. et al. Parkinsonʼs disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol 2007; 113: 421-429
  • 39 Bloch A, Probst A, Bissig H. et al. Alpha-synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol Appl Neurobiol 2006; 32: 284-295
  • 40 Beach TG, White 3rd CL, Hladik CL. et al. Olfactory bulb alpha-synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta Neuropathol 2009; 117: 169-174
  • 41 Braak H, de Vos RA, Bohl J. et al. Gastric alpha-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinsonʼs disease-related brain pathology. Neurosci Lett 2006; 396: 67-72
  • 42 Del Tredici K, Hawkes CH, Ghebremedhin E. et al. Lewy pathology in the submandibular gland of individuals with incidental Lewy body disease and sporadic Parkinsonʼs disease. Acta Neuropathol 2010; 119: 703-713
  • 43 Orimo S, Amino T, Itoh Y. et al. Cardiac sympathetic denervation precedes neuronal loss in the sympathetic ganglia in Lewy body disease. Acta Neuropathol 2005; 109: 583-588
  • 44 Minguez-Castellanos A, Chamorro CE, Escamilla-Sevilla F. et al. Do alpha-synuclein aggregates in autonomic plexuses predate Lewy body disorders?: a cohort study. Neurology 2007; 68: 2012-2018
  • 45 Wakabayashi K, Takahashi H, Ohama E. et al. Parkinsonʼs disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol 1990; 79: 581-583
  • 46 Wakabayashi K, Takahashi H, Takeda S. et al. Parkinsonʼs disease: the presence of Lewy bodies in Auerbach's and Meissner's plexuses. Acta Neuropathol 1988; 76: 217-221
  • 47 Kupsky WJ, Grimes MM, Sweeting J. et al. Parkinsonʼs disease and megacolon: concentric hyaline inclusions (Lewy bodies) in enteric ganglion cells. Neurology 1987; 37: 1253-1255
  • 48 Lebouvier T, Chaumette T, Damier P. et al. Pathological lesions in colonic biopsies during Parkinsonʼs disease. Gut 2008; 57: 1741-1743
  • 49 Gold A, Turkalp ZT, Munoz DG. Enteric alpha-synuclein expression is increased in Parkinsonʼs disease but not Alzheimer's disease. Mov Disord 2013; 28: 237-240
  • 50 Shannon KM, Keshavarzian A, Mutlu E. et al. Alpha-synuclein in colonic submucosa in early untreated Parkinsonʼs disease. Mov Disord 2012; 27: 709-715
  • 51 Beach TG, Adler CH, Sue LI. et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 2010; 119: 689-702
  • 52 Pouclet H, Lebouvier T, Coron E. et al. A comparison between rectal and colonic biopsies to detect Lewy pathology in Parkinsonʼs disease. Neurobiol Dis 2012; 45: 305-309
  • 53 Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ. et al. Pathological alpha-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann Neurol 2016; 79: 940-949
  • 54 Hilton D, Stephens M, Kirk L. et al. Accumulation of alpha-synuclein in the bowel of patients in the pre-clinical phase of Parkinsonʼs disease. Acta Neuropathol 2014; 127: 235-241
  • 55 Shannon KM, Keshavarzian A, Dodiya HB. et al. Is alpha-synuclein in the colon a biomarker for premotor Parkinsonʼs disease? Evidence from 3 cases. Mov Disord 2012; 27: 716-719
  • 56 Ito S, Takao M, Hatsuta H. et al. Alpha-synuclein immunohistochemistry of gastrointestinal and biliary surgical specimens for diagnosis of Lewy body disease. Int J Clin Exp Pathol 2014; 7: 1714-1723
  • 57 Abbott RD, Ross GW, Petrovitch H. et al. Bowel movement frequency in late-life and incidental Lewy bodies. Mov Disord 2007; 22: 1581-1586
  • 58 Petrovitch H, Abbott RD, Ross GW. et al. Bowel movement frequency in late-life and substantia nigra neuron density at death. Mov Disord 2009; 24: 371-376
  • 59 Reichmann H. View point: etiology in Parkinsonʼs disease. Dual hit or spreading intoxication. J Neurol Sci 2011; 310: 9-11
  • 60 Hawkes CH, Del Tredici K, Braak H. Parkinsonʼs disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol 2007; 33: 599-614
  • 61 Braak H, Rub U, Gai WP. et al. Idiopathic Parkinsonʼs disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 2003; 110: 517-536
  • 62 Braak H, Del Tredici K. Neuroanatomy and pathology of sporadic Parkinsonʼs disease. Adv Anat Embryol Cell Biol 2009; 201: 1-119
  • 63 Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12: 366-375
  • 64 Klingelhoefer L, Reichmann H. Dementia – the real problem for patients with Parkinson’s disease. Basal Ganglia 2014; 4: 9-13
  • 65 Kalaitzakis ME, Graeber MB, Gentleman SM. et al. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinsonʼs disease: a critical analysis of alpha-synuclein staging. Neuropathol Appl Neurobiol 2008; 34: 284-295
  • 66 Attems J, Jellinger KA. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinsonʼs disease. Neuropathol Appl Neurobiol 2008; 34: 466-467
  • 67 Zaccai J, Brayne C, McKeith I. et al. Patterns and stages of alpha-synucleinopathy: Relevance in a population-based cohort. Neurology 2008; 70: 1042-1048
  • 68 Parkkinen L, Pirttila T, Alafuzoff I. Applicability of current staging/categorization of alpha-synuclein pathology and their clinical relevance. Acta Neuropathol 2008; 115: 399-407
  • 69 Jellinger KA. Lewy body-related alpha-synucleinopathy in the aged human brain. J Neural Transm 2004; 111 (10) -11 1219-1235
  • 70 Jellinger KA. Alpha-synuclein pathology in Parkinsonʼs and Alzheimer's disease brain: incidence and topographic distribution--a pilot study. Acta Neuropathol 2003; 106 (03) 191-201
  • 71 Bottner M, Zorenkov D, Hellwig I. et al. Expression pattern and localization of alpha-synuclein in the human enteric nervous system. Neurobiol Dis 2012; 48: 474-480
  • 72 Visanji NP, Marras C, Kern DS. et al. Colonic mucosal a-synuclein lacks specificity as a biomarker for Parkinson disease. Neurology 2015; 84: 609-616
  • 73 Muntane G, Ferrer I, Martinez-Vicente M. Alpha-synuclein phosphorylation and truncation are normal events in the adult human brain. Neuroscience 2012; 200: 106-119
  • 74 Gelpi E, Navarro-Otano J, Tolosa E. et al. Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders. Mov Disord 2014; 29: 1010-1018
  • 75 Annerino DM, Arshad S, Taylor GM. et al. Parkinsonʼs disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol 2012; 124: 665-680
  • 76 Lebouvier T, Neunlist M, Bruley des Varannes S. et al. Colonic biopsies to assess the neuropathology of Parkinsonʼs disease and its relationship with symptoms. PLoS One 2010; 5: e12728
  • 77 Singaram C, Ashraf W, Gaumnitz EA. et al. Dopaminergic defect of enteric nervous system in Parkinsonʼs disease patients with chronic constipation. Lancet 1995; 346: 861-864
  • 78 De Giorgio R, Giancola F, Boschetti E. et al. Enteric glia and neuroprotection: basic and clinical aspects. Am J Physiol Gastrointest Liver Physiol 2012; 303: G887-893
  • 79 Devos D, Lebouvier T, Lardeux B. et al. Colonic inflammation in Parkinsonʼs disease. Neurobiol Dis 2013; 50: 42-48
  • 80 Clairembault T, Kamphuis W, Leclair-Visonneau L. et al. Enteric GFAP expression and phosphorylation in Parkinsonʼs disease. J Neurochem 2014; 130: 805-815
  • 81 Bassotti G, Villanacci V, Maurer CA. et al. The role of glial cells and apoptosis of enteric neurones in the neuropathology of intractable slow transit constipation. Gut 2006; 55: 41-46
  • 82 Forsyth CB, Shannon KM, Kordower JH. et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinsonʼs disease. PLoS One 2011; 6: e28032
  • 83 Clairembault T, Leclair-Visonneau L, Neunlist M. et al. Enteric glial cells: New players in Parkinsonʼs disease?. Mov Disord 2015; 30: 494-498
  • 84 Halliday G, McCann H, Shepherd C. Evaluation of the Braak hypothesis: how far can it explain the pathogenesis of Parkinsonʼs disease?. Expert Rev Neurother 2012; 12: 673-686
  • 85 Parkkinen L, Soininen H, Laakso M. et al. Alpha-synuclein pathology is highly dependent on the case selection. Neuropathol Appl Neurobiol 2001; 27: 314-325
  • 86 Antunes L, Frasquilho S, Ostaszewski M. et al. Similar alpha-Synuclein staining in the colon mucosa in patients with Parkinsonʼs disease and controls. Mov Disord 2016; 31: 1567-1570
  • 87 Schneider SA, Boettner M, Alexoudi A. et al. Can we use peripheral tissue biopsies to diagnose Parkinsonʼs disease? A review of the literature. Eur J Neurol 2016; 23: 247-261
  • 88 Parkkinen L, Kauppinen T, Pirttila T. et al. Alpha-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol 2005; 57: 82-91
  • 89 Forno LS. Concentric hyalin intraneuronal inclusions of Lewy type in the brains of elderly persons (50 incidental cases): relationship to parkinsonism. J Am Geriatr Soc 1969; 17: 557-575
  • 90 Saito Y, Ruberu NN, Sawabe M. et al. Lewy body-related alpha-synucleinopathy in aging. J Neuropathol Exp Neurol 2004; 63: 742-749
  • 91 Dickson DW, Fujishiro H, DelleDonne A. et al. Evidence that incidental Lewy body disease is pre-symptomatic Parkinsonʼs disease. Acta Neuropathol 2008; 115: 437-444
  • 92 Bove J, Prou D, Perier C. et al. Toxin-induced models of Parkinsonʼs disease. NeuroRx 2005; 2: 484-494
  • 93 McDowell K, Chesselet MF. Animal models of the non-motor features of Parkinsonʼs disease. Neurobiol Dis 2012; 46: 597-606
  • 94 Hisahara S, Shimohama S. Toxin-induced and genetic animal models of Parkinsonʼs disease. Parkinsons Dis 2010; 2011: 951709
  • 95 Betarbet R, Sherer TB, MacKenzie G. et al. Chronic systemic pesticide exposure reproduces features of Parkinsonʼs disease. Nat Neurosci 2000; 3: 1301-1306
  • 96 Rojo AI, Cavada C, de Sagarra MR. et al. Chronic inhalation of rotenone or paraquat does not induce Parkinsonʼs disease symptoms in mice or rats. Exp Neurol 2007; 208: 120-126
  • 97 Pan-Montojo F, Anichtchik O, Dening Y. et al. Progression of Parkinsonʼs disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 2010; 5: e8762
  • 98 Hoglinger GU, Feger J, Prigent A. et al. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 2003; 84: 491-502
  • 99 Inden M, Kitamura Y, Takeuchi H. et al. Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone. J Neurochem 2007; 101: 1491-1504
  • 100 Tasselli M, Chaumette T, Paillusson S. et al. Effects of oral administration of rotenone on gastrointestinal functions in mice. Neurogastroenterol Motil 2013; 25: e183-193
  • 101 Sherer TB, Kim JH, Betarbet R. et al. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 2003; 179: 9-16
  • 102 Silva BA, Einarsdottir O, Fink AL. et al. Biophysical Characterization of alpha-Synuclein and Rotenone Interaction. Biomolecules 2013; 3: 703-732
  • 103 Yuan YH, Yan WF, Sun JD. et al. The molecular mechanism of rotenone-induced alpha-synuclein aggregation: Emphasizing the role of the calcium/GSK3beta pathway. Toxicol Lett 2015; 233: 163-171
  • 104 Chorfa A, Lazizzera C, Betemps D. et al. A variety of pesticides trigger in vitro alpha-synuclein accumulation, a key event in Parkinsonʼs disease. Arch Toxicol 2014; 5: 1279
  • 105 Schapira AH. Disease modification in Parkinsonʼs disease. Lancet Neurol 2004; 3: 362-368
  • 106 Mizuno Y, Ohta S, Tanaka M. et al. Deficiencies in complex I subunits of the respiratory chain in Parkinsonʼs disease. Biochem Biophys Res Commun 1989; 163: 1450-1455
  • 107 Franco-Iborra S, Vila M, Perier C. The parkinson disease mitochondrial hypothesis: where are we at?. Neuroscientist 2016; 22: 266-277
  • 108 Jenner P. Oxidative stress in Parkinsonʼs disease. Ann Neurol 2003; 53 (Suppl. 03) S26-36 discussion S36-8
  • 109 McGeer PL, McGeer EG. Inflammation and neurodegeneration in Parkinsonʼs disease. Parkinsonism Relat Disord 2004; 10 (Suppl. 01) S3-7
  • 110 Gao HM, Hong JS, Zhang W. et al. Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinsonʼs disease. J Neurosci 2003; 23: 1228-1236
  • 111 Alvarez-Erviti L, Seow Y, Schapira AH. et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis 2011; 42: 360-367
  • 112 Hasegawa T, Konno M, Baba T. et al. The AAA-ATPase VPS4 regulates extracellular secretion and lysosomal targeting of alpha-synuclein. PLoS One 2011; 6: e29460
  • 113 Pan-Montojo F, Schwarz M, Winkler C. et al. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci Rep 2012; 2: 898
  • 114 Luk KC, Kehm V, Carroll J. et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012; 338: 949-953
  • 115 Lee HJ, Suk JE, Bae EJ. et al. Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein. Int J Biochem Cell Biol 2008; 40: 1835-1849
  • 116 Angot E, Steiner JA, Lema Tome CM. et al. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS One 2012; 7: e39465
  • 117 Braidy N, Gai WP, Xu YH. et al. Alpha-synuclein transmission and mitochondrial toxicity in primary human foetal enteric neurons in vitro. Neurotox Res 2014; 25: 170-182
  • 118 Esteves AR, Arduino DM, Silva DF. et al. Mitochondrial Dysfunction: The Road to Alpha-Synuclein Oligomerization in PD. Parkinsons Dis 2011; 2011: 693761
  • 119 Choi WS, Palmiter RD, Xia Z. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinsonʼs disease model. J Cell Biol 2011; 192: 873-882
  • 120 Klegeris A, Giasson BI, Zhang H. et al. Alpha-synuclein and its disease-causing mutants induce ICAM-1 and IL-6 in human astrocytes and astrocytoma cells. FASEB J 2006; 20: 2000-2008
  • 121 McGeer PL, McGeer EG. The alpha-synuclein burden hypothesis of Parkinson disease and its relationship to Alzheimer disease. Exp Neurol 2008; 212: 235-238
  • 122 Hunot S, Dugas N, Faucheux B. et al. FcepsilonRII/CD23 is expressed in Parkinsonʼs disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 1999; 19: 3440-3447
  • 123 Dickson DW, Braak H, Duda JE. et al. Neuropathological assessment of Parkinsonʼs disease: refining the diagnostic criteria. Lancet Neurol 2009; 8: 1150-1157
  • 124 Jellinger KA. Neuropathobiology of non-motor symptoms in Parkinson disease. J Neural Transm (Vienna) 2015; 122: 1429-1440
  • 125 Sauerbier A, Jenner P, Todorova A. et al. Non motor subtypes and Parkinsonʼs disease. Parkinsonism Relat Disord 2016; 22 (Suppl. 01) S41-46
  • 126 Desplats P, Lee HJ, Bae EJ. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 2009; 106: 13010-13015
  • 127 Danzer KM, Kranich LR, Ruf WP. et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 2012; 7: 42
  • 128 Brundin P, Li JY, Holton JL. et al. Research in motion: the enigma of Parkinsonʼs disease pathology spread. Nat Rev Neurosci 2008; 9: 741-745
  • 129 Li JY, Englund E, Holton JL. et al. Lewy bodies in grafted neurons in subjects with Parkinsonʼs disease suggest host-to-graft disease propagation. Nat Med 2008; 14: 501-503
  • 130 Kordower JH, Brundin P. Lewy body pathology in long-term fetal nigral transplants: is Parkinsonʼs disease transmitted from one neural system to another?. Neuropsychopharmacology 2009; 34: 254
  • 131 Ling EA, Wong WC, Yick TY. et al. Ultrastructural changes in the dorsal motor nucleus of monkey following bilateral cervical vagotomy. J Neurocytol 1986; 15: 1-15
  • 132 Holmqvist S, Chutna O, Bousset L. et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 2014; 128: 805-820
  • 133 Hardy J. Expression of normal sequence pathogenic proteins for neurodegenerative disease contributes to disease risk: ‘permissive templating’ as a general mechanism underlying neurodegeneration. Biochem Soc Trans 2005; 33: 578-581
  • 134 Svensson E, Horvath-Puho E, Thomsen RW. et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol 2015; 78: 522-529