Klin Monbl Augenheilkd 2019; 236(03): 295-307
DOI: 10.1055/s-0043-103002
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Uveale Melanomzellen unter oxidativem Stress – Einfluss von VEGF und VEGF-Inhibitoren

Uveal Melanoma Cell Under Oxidative Stress – Influence of VEGF and VEGF-Inhibitors
M. Dithmer
1   Augenklinik, Universitätsklinikum Schleswig-Holstein, Campus Kiel
,
A. M. Kirsch
1   Augenklinik, Universitätsklinikum Schleswig-Holstein, Campus Kiel
,
L. Gräfenstein
1   Augenklinik, Universitätsklinikum Schleswig-Holstein, Campus Kiel
,
F. Wang
2   Klinik für Unfallchirurgie, Universitätsklinikum Schleswig-Holstein, Campus Kiel
,
H. Schmidt
3   MetaPhysiol, Essenheim
,
S. E. Coupland
4   Molecular and Clinical Cancer Medicine, Liverpool Ocular Oncology Research Group, University of Liverpool, United Kingdom of Great Britain and Northern Ireland
,
S. Fuchs
2   Klinik für Unfallchirurgie, Universitätsklinikum Schleswig-Holstein, Campus Kiel
,
J. Roider
1   Augenklinik, Universitätsklinikum Schleswig-Holstein, Campus Kiel
,
A. K. Klettner
1   Augenklinik, Universitätsklinikum Schleswig-Holstein, Campus Kiel
› Author Affiliations
Further Information

Publication History

eingereicht 13 December 2016

akzeptiert 16 January 2017

Publication Date:
04 April 2017 (online)

Zusammenfassung

Hintergrund Die Rolle des oxidativen Stresses bei Krebserkrankungen ist komplex. Während die durch ihn ausgelösten pathologischen Veränderungen an der Krebsentstehung beteiligt sind, kann er in späteren Stadien das Absterben von Tumorzellen fördern und sogar Metastasierungen eindämmen. Krebszellen zeigen durch ihren veränderten Metabolismus häufig eine verstärkte Bildung von radikalen Sauerstoffspezies, was sie anfällig für zusätzlichen oxidativen Stress macht. Dies ist ein wichtiger Wirkmechanismus von verschiedenen Chemotherapeutika und von therapeutisch eingesetzter ionisierender Strahlung. Das uveale Melanom ist der häufigste primäre Tumor im adulten Auge. Für die bei etwa 50 % der Patienten auftretenden Metastasen sind zurzeit leider keine wirksamen Behandlungsoptionen verfügbar. Der Primärtumor kann aber mit gutem Erfolg mit ionisierender Strahlung behandelt werden. Eine wichtige Nebenwirkung ist hierbei die Strahlenretinopathie, die wiederum mit VEGF-Antagonisten (VEGF: Vascular endothelial Growth Factor) behandelt wird. Eine Therapie des Primärtumors mit Anti-VEGF-Substanzen wird ebenfalls in der Literatur diskutiert. Über eine solche Anwendung liegen bisher nur wenige Daten vor, es ist aber eine paradoxe Verschlechterung der Situation bei einem uvealen Melanommodell in der Maus unter Anti-VEGF-Therapie berichtet worden.

Methoden In einer Studie haben wir den Einfluss von VEGF und dem VEGF-Antagonisten Bevacizumab auf das Überleben von 5 unterschiedlichen uvealen Melanomzelllinien, die mit oxidativem Stress (Wasserstoffperoxid) behandelt worden sind, untersucht. Im Weiteren haben wir uns die Expression relevanter Proteine sowie den Einfluss von Bevacizumab auf das Proliferationsverhalten der Zellen und auf das Angiogeneseverhalten von Endothelzellen in einer Kokultur mit uvealen Melanomzellen angesehen.

Ergebnisse Wir konnten in dieser Studie zeigen, dass nicht nur VEGF, sondern paradoxerweise auch der VEGF-Antagonist Bevacizumab uveale Melanomzellen vor einem Zelltod durch oxidativen Stress schützen kann. Bevacizumab zeigt darüber hinaus keinen Einfluss auf die Proliferation der Zellen und ist nur bedingt in der Lage, angiogene Strukturen in diesem System zu verhindern.

Schlussfolgerungen Die Protektion der uvealen Melanomzellen vor oxidativem Stress durch Bevacizumab ist, gerade in Anbetracht des Wirkprinzips der ionisierenden Strahlung, durch oxidativen Stress in den Tumorzellen einen Zelltod auszulösen, ein besorgniserregender Befund, der gegen eine Verwendung von Anti-VEGF bei uvealem Melanom spricht.

Abstract

Background The role of oxidative stress in cancer is complex. While the pathological alterations induced by oxidative stress may be involved in the induction of tumours, in the late stages of tumour development, it can facilitate the loss of tumour cells and might even prevent metastasis. Tumour cells show metabolic alterations, often inducing an increased production of reactive oxygen species, which makes these cells particularly vulnerable to additional oxidative stress. This is an important mode of action in the use of many chemotherapeutics and in the application of ionizing radiation. Uveal melanoma is the most frequent primary tumour in the adult eye. For metastasis of this tumour, which affects about 50 % of the patients, no appropriate treatment is currently available. However, the primary tumour can efficiently be treated with ionizing radiation. A frequent side effect of this treatment is radiation retinopathy, which is treated with vascular endothelial growth factor (VEGF) antagonists. A therapy of the primary tumour with VEGF antagonists is under discussion. So far, little data is available on this subject, however, a paradoxical worsening of the situation has been found in a mouse model of uveal melanoma treated with bevacizumab.

Methods We have investigated the effect of VEGF and of the VEGF-antagonist bevacizumab on the survival of five different melanoma cell lines under oxidative stress treatment with hydrogen peroxide. In addition, we investigated the expression of relevant proteins and the effect of bevacizumab on the proliferation of the cells as well as its effect on the angiogenic behaviour of endothelial cells, co-cultured with uveal melanoma cells.

Results Our study showed that not only VEGF but also, paradoxically, the VEGF-antagonist bevacizumab is able to protect uveal melanoma cells from oxidative stress-induced cell death. Bevacizumab did not influence the proliferation of the cells and showed only limited effectiveness to reduce angiogenic structures.

Conclusion Considering that oxidative stress is the mode of action for ionizing radiation to induce cell death, a protective effect of bevacizumab on uveal melanoma cells against oxidative stress is worrisome and argues against the use of VEGF in uveal melanoma.

 
  • Literatur

  • 1 Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2013; 12: 931-947
  • 2 Klettner A. Oxidative stress induced cellular signaling in RPE cells. Front Biosci 2012; 4: 392-411
  • 3 Jo M, Nishikawa T, Nakajima T. et al. Oxidative stress is closely associated with tumor angiogenesis of hepatocellular carcinoma. J Gastroenterol 2011; 46: 809-821
  • 4 Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11: 85-95
  • 5 Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991; 51: 794-798
  • 6 DeNicola GM, Karreth FA, Humpton TJ. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475: 106-109
  • 7 Glasauer A, Sena LA, Diebold LP. et al. Targeting SOD1 reduces experimental non-small-cell lung cancer. J Clin Invest 2014; 124: 117-128
  • 8 Harris IS, Treloar AE, Inoue S. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 2015; 27: 211-222
  • 9 Yang W, de Bono DP. A new role for vascular endothelial growth factor and fibroblast growth factors: increasing endothelial resistance to oxidative stress. FEBS Lett 1997; 403: 139-142
  • 10 Lee SH, Jeong D, Han YS. et al. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann Surg Treat Res 2015; 89: 1-8
  • 11 Katsabeki-Katsafli A, Kerenidi T, Kostikas K. et al. Serum vascular endothelial growth factor is related to systemic oxidative stress in patients with lung cancer. Lung Cancer 2008; 60: 271-276
  • 12 Caraglia M, Giuberti G, Marra M. et al. Oxidative stress and ERK1/2 phosphorylation as predictors of outcome in hepatocellular carcinoma patients treated with sorafenib plus octreotide LAR. Cell Death Dis 2011; 2: e150
  • 13 Kweider N, Fragoulis A, Rosen C. et al. Interplay between vascular endothelial growth factor (VEGF) and nuclear factor erythroid 2-related factor-2 (Nrf2): implications for preeclampsia. J Biol Chem 2011; 286: 42863-42872
  • 14 Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol 2012; 2012: 137289
  • 15 Huang HL, Fang LW, Lu SP. et al. DNA-damaging reagents induce apoptosis through reactive oxygen species-dependent Fas aggregation. Oncogene 2003; 22: 8168-8177
  • 16 Alexandre J, Batteux F, Nicco C. et al. Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo. Int J Cancer 2006; 119: 41-48
  • 17 Raj L, Ide T, Gurkar AU. et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011; 475: 231-234
  • 18 Leach JK, Van Tuyle G, Lin PS. et al. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 2001; 61: 3894-3901
  • 19 Piskounova E, Agathocleous M, Murphy MM. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 2015; 527: 186-191
  • 20 Greenlee H, Hershman DL, Jacobson JS. Use of antioxidant supplements during breast cancer treatment: a comprehensive review. Breast Cancer Res Treat 2009; 115: 437-452
  • 21 DʼAndrea GM. Use of antioxidants during chemotherapy and radiotherapy should be avoided. CA Cancer J Clin 2005; 55: 319-321
  • 22 Klein EA, Thompson jr. IM, Tangen CM. et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2011; 306: 1549-1556
  • 23 Shields JA, Shields CL. Management of posterior uveal melanoma: past, present, and future: the 2014 Charles L. Schepens lecture. Ophthalmology 2015; 122: 414-428
  • 24 Blasi MA, Maresca V, Roccella M. et al. Antioxidant pattern in uveal melanocytes and melanoma cell cultures. Invest Ophthalmol Vis Sci 1999; 40: 3012-3016
  • 25 Chattopadhyay C, Kim DW, Gombos DS. et al. Uveal melanoma: From diagnosis to treatment and the science in between. Cancer 2016; 122: 2299-2312
  • 26 Dai W, Zhou J, Jin B. et al. Class III-specific HDAC inhibitor tenovin-6 induces apoptosis, suppresses migration and eliminates cancer stem cells in uveal melanoma. Sci Rep 2016; 6: 22622
  • 27 Yang M, Kuang X, Pan Y. et al. Clinicopathological characteristics of vascular endothelial growth factor expression in uveal melanoma: A meta-analysis. Mol Clin Oncol 2014; 2: 363-368
  • 28 Boyd SR, Tan D, Bunce C. et al. Vascular endothelial growth factor is elevated in ocular fluids of eyes harbouring uveal melanoma: identification of a potential therapeutic window. Br J Ophthalmol 2002; 86: 448-452
  • 29 Missotten GS, Notting IC, Schlingemann RO. et al. Vascular endothelial growth factor a in eyes with uveal melanoma. Arch Ophthalmol 2006; 124: 1428-1434
  • 30 Hu K, Babapoor-Farrokhran S, Rodrigues M. et al. Hypoxia-inducible factor 1 upregulation of both VEGF and ANGPTL4 is required to promote the angiogenic phenotype in uveal melanoma. Oncotarget 2016; 7: 7816-7828
  • 31 El Filali M, Missotten GS, Maat W. et al. Regulation of VEGF-A in uveal melanoma. Invest Ophthalmol Vis Sci 2010; 51: 2329-2337
  • 32 Yang H, Jager MJ, Grossniklaus HE. Bevacizumab suppression of establishment of micrometastases in experimental ocular melanoma. Invest Ophthalmol Vis Sci 2010; 51: 2835-2842
  • 33 Tarhini AA, Frankel P, Margolin KA. et al. Aflibercept (VEGF Trap) in inoperable stage III or stage iv melanoma of cutaneous or uveal origin. Clin Cancer Res 2011; 17: 6574-6581
  • 34 Lima BR, Schoenfield LR, Singh AD. The impact of intravitreal bevacizumab therapy on choroidal melanoma. Am J Ophthalmol 2011; 151: 323-328
  • 35 El Filali M, Ly LV, Luyten GP. et al. Bevacizumab and intraocular tumors: an intriguing paradox. Mol Vis 2012; 18: 2454-2467
  • 36 Finger PT, Chin KJ, Semenova EA. Intravitreal anti-VEGF therapy for macular radiation retinopathy: a 10-year study. Eur J Ophthalmol 2016; 26: 60-66
  • 37 De Waard-Siebinga I, Blom DJ, Griffioen M. et al. Establishment and characterization of an uveal-melanoma cell line. Int J Cancer 1995; 62: 155-161
  • 38 Verbik DJ, Murray TG, Tran JM. et al. Melanomas that develop within the eye inhibit lymphocyte proliferation. Int J Cancer 1997; 73: 470-478
  • 39 Luyten GP, Naus NC, Mooy CM. et al. Establishment and characterization of primary and metastatic uveal melanoma cell lines. Int J Cancer 1996; 66: 380-387
  • 40 Dithmer M, Fuchs S, Shi Y. et al. Fucoidan reduces secretion and expression of vascular endothelial growth factor in the retinal pigment epithelium and reduces angiogenesis in vitro. PLoS One 2014; 9: e89150
  • 41 Fuchs S, Motta A, Migliaresi C. et al. Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials. Biomaterials 2006; 27: 5399-5408
  • 42 Brar VS, Sharma RK, Murthy RK. et al. Bevacizumab neutralizes the protective effect of vascular endothelial growth factor on retinal ganglion cells. Mol Vis 2010; 16: 1848-1853
  • 43 Amato R, Biagioni M, Cammalleri M. et al. VEGF as a survival factor in ex vivo models of early diabetic retinopathy. Invest Ophthalmol Vis Sci 2016; 57: 3066-3076
  • 44 Osada S, Imai H, Tomita H. et al. Vascular endothelial growth factor protects hepatoma cells against oxidative stress-induced cell death. J Gastroenterol Hepatol 2006; 21: 988-993
  • 45 Chen T, Zhou G, Zhu Q. et al. Overexpression of vascular endothelial growth factor 165 (VEGF165) protects cardiomyocytes against doxorubicin-induced apoptosis. J Chemother 2010; 22: 402-406
  • 46 Fack F, Espedal H, Keunen O. et al. Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol 2015; 129: 115-131
  • 47 Sheu SJ, Chao YM, Liu NC. et al. Differential effects of bevacizumab, ranibizumab and aflibercept on cell viability, phagocytosis and mitochondrial bioenergetics of retinal pigment epithelial cell. Acta Ophthalmol 2015; 93: e631-e643
  • 48 Sari A, Adiguzel U, Canacankatan N. et al. Effects of intravitreal bevacizumab in repeated doses: an experimental study. Retina 2009; 29: 1346-1355
  • 49 Van den Aardweg GJ, Kiliç E, de Klein A. et al. Dose fractionation effects in primary and metastatic human uveal melanoma cell lines. Invest Ophthalmol Vis Sci 2003; 44: 4660-4664
  • 50 Amirouchene-Angelozzi N, Nemati F, Gentien D. et al. Establishment of novel cell lines recapitulating the genetic landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target. Mol Oncol 2014; 8: 1508-1520
  • 51 Dong F, Lou D. MicroRNA-34b/c suppresses uveal melanoma cell proliferation and migration through multiple targets. Mol Vis 2012; 18: 537-546
  • 52 Koch KR, Refaian N, Hos D. et al. Autocrine impact of VEGF-A on uveal melanoma cells. Invest Ophthalmol Vis Sci 2014; 55: 2697-2704
  • 53 Klettner A, Roider J. Comparison of bevacizumab, ranibizumab, and pegaptanib in vitro: efficiency and possible additional pathways. Invest Ophthalmol Vis Sci 2008; 49: 4523-4527
  • 54 Spitzer MS, Wallenfels-Thilo B, Sierra A. et al. Antiproliferative and cytotoxic properties of bevacizumab on different ocular cells. Br J Ophthalmol 2006; 90: 1316-1321
  • 55 Sudaka A, Susini A, Lo Nigro C. et al. Combination of bevacizumab and irradiation on uveal melanoma: an in vitro and in vivo preclinical study. Invest New Drugs 2013; 31: 59-65
  • 56 Loges S, Mazzone M, Hohensinner P. et al. Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 2009; 15: 167-170