Drug Res (Stuttg) 2017; 67(10): 591-595
DOI: 10.1055/s-0043-111411
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Cremophor EL Alters the Plasma Protein Binding and Pharmacokinetic Profile of Valspodar in Rats

Ziyad Binkhathlan
1   Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
› Author Affiliations
Further Information

Publication History

received 22 February 2017

accepted 12 May 2017

Publication Date:
19 June 2017 (online)

Abstract

Cremophor EL is a nonionic surfactant widely used in pharmaceutical formulations. Nonetheless, there are several reports on the influence of this excipient on the protein binding, pharmacokinetics, and pharmacodynamics of drugs. Valspodar is an investigational non-immunosuppressive derivative of cyclosporine A, used in clinical trials for treatment of multidrug resistant tumors. The formulation of valspodar (Amdray®) contains cremophor EL and ethanol as solubilizing agents. The main aim of the current study was to assess the plasma protein binding (in vitro) and the pharmacokinetic profile of valspodar in the cremophor EL-based formulation in comparison to a cremophor EL-free formulation following intravenous (i. v.) administration to rats. Valspodar dissolved in PEG 400/ethanol (diluted in Dextrose 5%) was used as the cremophor EL-free formulation. The in vitro plasma unbound fraction (f u) of valspodar in the cremophor EL formulation was 2.3-fold higher than the PEG 400/ethanol formulation. Following a single i. v. dose of 5 mg/kg, valspodar in the cremophor EL-based formulation had around 50% lower plasma AUC compared to the PEG 400/ethanol formulation. Moreover, the cremophor EL formulation had significantly higher volume of distribution and clearance in comparison to the PEG 400-based formulation. The results highlight the significance of excipient-drug interaction that should not be overlooked during the early stages of drug development.

 
  • References

  • 1 Kessel D. Properties of cremophor EL micelles probed by fluorescence. Photochem Photobiol 1992; 56: 447-451
  • 2 Woodcock DM, Jefferson S, Linsenmeyer ME. et al. Reversal of the multidrug resistance phenotype with cremophor EL, a common vehicle for water-insoluble vitamins and drugs. Cancer Res 1990; 50: 4199-4203
  • 3 Friche E, Jensen PB, Sehested M. et al. The solvents cremophor EL and Tween 80 modulate daunorubicin resistance in the multidrug resistant Ehrlich ascites tumor. Cancer Commun 1990; 2: 297-303
  • 4 Martin-Facklam M, Burhenne J, Ding R. et al. Dose-dependent increase of saquinavir bioavailability by the pharmaceutic aid cremophor EL. Br J Clin Pharmacol 2002; 53: 576-581
  • 5 Gelderblom H, Verweij J, Nooter K. et al. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 2001; 37: 1590-1598
  • 6 Loor F. Valspodar: current status and perspectives. Expert Opin Investig Drugs 1999; 8: 807-835
  • 7 Tai HL. Technology evaluation: Valspodar, Novartis AG. Curr Opin Mol Ther 2000; 2: 459-467
  • 8 Boesch D, Muller K, Pourtier-Manzanedo A. et al. Restoration of daunomycin retention in multidrug-resistant P388 cells by submicromolar concentrations of SDZ PSC 833, a nonimmunosuppressive cyclosporin derivative. Exp Cell Res 1991; 196: 26-32
  • 9 Lemaire M, Bruelisauer A, Guntz P. et al. Dose-dependent brain penetration of SDZ PSC 833, a novel multidrug resistance-reversing cyclosporin, in rats. Cancer Chemother Pharmacol 1996; 38: 481-486
  • 10 Kusunoki N, Takara K, Tanigawara Y. et al. Inhibitory effects of a cyclosporin derivative, SDZ PSC 833, on transport of doxorubicin and vinblastine via human P-glycoprotein. Jpn J Cancer Res 1998; 89: 1220-1228
  • 11 Watanabe T, Tsuge H, Oh-Hara T. et al. Comparative study on reversal efficacy of SDZ PSC 833, cyclosporin A and verapamil on multidrug resistance in vitro and in vivo. Acta Oncol 1995; 34: 235-241
  • 12 Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993; 62: 385-427
  • 13 Aicher L, Meier G, Norcross AJ. et al. Decrease in kidney calbindin-D 28kDa as a possible mechanism mediating cyclosporine A- and FK-506-induced calciuria and tubular mineralization. Biochem Pharmacol 1997; 53: 723-731
  • 14 Watanabe T, Nakayama Y, Naito M. et al. Cremophor EL reversed multidrug resistance in vitro but not in tumor-bearing mouse models. Anticancer Drugs 1996; 7: 825-832
  • 15 Brocks DR. Stereoselective pharmacokinetics of desbutylhalofantrine, a metabolite of halofantrine, in the rat after administration of the racemic metabolite or parent drug. Biopharm Drug Dispos 2000; 21: 365-371
  • 16 Schuhmacher J, Buhner K, Witt-Laido A. Determination of the free fraction and relative free fraction of drugs strongly bound to plasma proteins. J Pharm Sci 2000; 89: 1008-1021
  • 17 Binkhathlan Z, Hamdy DA, Brocks DR. et al. Pharmacokinetics of PSC 833 (valspodar) in its Cremophor EL formulation in rat. Xenobiotica 2010; 40: 55-61
  • 18 Binkhathlan Z, Somayaji V, Brocks DR. et al. Development of a liquid chromatography-mass spectrometry (LC/MS) assay method for the quantification of PSC 833 (Valspodar) in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 869: 31-37
  • 19 Binkhathlan Z, Hamdy DA, Brocks DR. et al. Development of a polymeric micellar formulation for valspodar and assessment of its pharmacokinetics in rat. Eur J Pharm Biopharm 2010; 75: 90-95
  • 20 Fischer V, Rodriguez-Gascon A, Heitz F. et al. The multidrug resistance modulator valspodar (PSC 833) is metabolized by human cytochrome P450 3A. Implications for drug-drug interactions and pharmacological activity of the main metabolite. Drug Metab Dispos 1998; 26: 802-811
  • 21 Urien S, Zini R, Lemaire M. et al. Assessment of cyclosporine A interactions with human plasma lipoproteins in vitro and in vivo in the rat. J Pharmacol Exp Ther 1990; 253: 305-309
  • 22 Jin M, Shimada T, Yokogawa K. et al. Cremophor EL releases cyclosporin A adsorbed on blood cells and blood vessels, and increases apparent plasma concentration of cyclosporin A. Int J Pharm 2005; 293: 137-144
  • 23 van Zuylen L, Karlsson MO, Verweij J. et al. Pharmacokinetic modeling of paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother Pharmacol 2001; 47: 309-318
  • 24 Gelderblom H, Verweij J, van Zomeren DM. et al. Influence of Cremophor El on the bioavailability of intraperitoneal paclitaxel. Clin Cancer Res 2002; 8: 1237-1241
  • 25 Sparreboom A, van Tellingen O, Nooijen WJ. et al. Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res 1996; 56: 2112-2115
  • 26 Sparreboom A, van Zuylen L, Brouwer E. et al. Cremophor EL-mediated alteration of paclitaxel distribution in human blood: clinical pharmacokinetic implications. Cancer Res 1999; 59: 1454-1457
  • 27 Highley MS, De Bruijn EA. Erythrocytes and the transport of drugs and endogenous compounds. Pharm Res 1996; 13: 186-195
  • 28 Simon N, Dailly E, Combes O. et al. Role of lipoproteins in the plasma binding of SDZ PSC 833, a novel multidrug resistance-reversing cyclosporin. Br J Clin Pharmacol 1998; 45: 173-175
  • 29 Bagnarello AG, Lewis LA, McHenry MC. et al. Unusual serum lipoprotein abnormality induced by the vehicle of miconazole. N Engl J Med 1977; 296: 497-499
  • 30 Kongshaug M, Cheng LS, Moan J. et al. Interaction of cremophor EL with human plasma. Int J Biochem 1991; 23: 473-478
  • 31 Woodburn K, Kessel D. The alteration of plasma lipoproteins by cremophor EL. J Photochem Photobiol B 1994; 22: 197-201
  • 32 Kessel D, Woodburn K, Decker D. et al. Fractionation of Cremophor EL delineates components responsible for plasma lipoprotein alterations and multidrug resistance reversal. Oncol Res 1995; 7: 207-212
  • 33 Liu B, Gordon WP, Richmond W. et al. Use of solubilizers in preclinical formulations: Effect of Cremophor EL on the pharmacokinetic properties on early discovery compounds. Eur J Pharm Sci 2016; 87: 52-57