J Pediatr Genet 2023; 12(02): 097-104
DOI: 10.1055/s-0043-1763257
Review Article

Fibrosis as a Risk Factor for Cutaneous Squamous Cell Carcinoma in Recessive Dystrophic Epidermolysis Bullosa: A Systematic Review

Brenda Lamônica Rodrigues de Azevedo
1   Federal University of Espírito Santo, Health Science Center, Graduate Program in Dental Science, Vitória, ES, Brazil
,
Gabriel Marim Roni
2   Federal University of Espírito Santo, Health Science Center, Morphology Department, Medical School, Vitória, ES, Brazil
,
Rosalie Matuk Fuentes Torrelio
3   Plastic Surgery, Our Lady of Glory Children's Hospital, Debra, Vitória, ES, Brazil
,
4   Federal University of Espírito Santo, Health Science Center, Morphology Department, Graduate Program in Dental Science, Vitória, ES, Brazil
› Author Affiliations

Abstract

Recessive dystrophic epidermolysis bullosa (RDEB) is a severe subtype of epidermolysis bullosa caused by changes in collagen VII with a high risk of early development of cutaneous squamous cell carcinoma (cSCC). This review aimed to discuss the relationship between the recurrent healing process, the appearance of fibrosis, and malignant epithelial transformation in RDEB. We searched PubMed, the Regional Portal of the Virtual Health Library, and Embase for articles on the relationship between blistering, recurrent scarring, and fibrosis in the context of cSCC and RDEB. That alterations of collagen VII result in blister formation, scar deficiency associated with inflammation, and increased expression of transforming growth factor β. These events promote the differentiation of myofibroblasts and the expression of profibrotic proteins, leading to structural changes and the establishment of a microenvironment favorable to carcinogenesis. Patients with RDEB and areas of recurrent scarring and fibrosis may be more prone to the development of cSCC.



Publication History

Received: 26 August 2022

Accepted: 16 January 2023

Article published online:
24 February 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Fortuna G, Aria M, Cepeda-Valdes R, Pollio A, Moreno-Trevino MG, Salas-Alanís JC. Clinical features of gingival lesions in patients with dystrophic epidermolysis bullosa: a cross-sectional study. Aust Dent J 2015; 60 (01) 18-23
  • 2 Baardman R, Yenamandra VK, Duipmans JC. et al. Novel insights into the epidemiology of epidermolysis bullosa (EB) from the Dutch EB Registry: EB more common than previously assumed?. J Eur Acad Dermatol Venereol 2021; 35 (04) 995-1006
  • 3 Fine JD. Epidemiology of inherited epidermolysis bullosa based on incidence and prevalence estimates from the National Epidermolysis Bullosa Registry. JAMA Dermatol 2016; 152 (11) 1231-1238
  • 4 Has C, Bauer JW, Bodemer C. et al. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br J Dermatol 2020; 183 (04) 614-627
  • 5 Waldman A, Schmults C. Cutaneous squamous cell carcinoma. Hematol Oncol Clin North Am 2019; 33 (01) 1-12
  • 6 Que SKT, Zwald FO, Schmults CD. Cutaneous squamous cell carcinoma: Incidence, risk factors, diagnosis, and staging. J Am Acad Dermatol 2018; 78 (02) 237-247
  • 7 Hogue L, Harvey VM. Basal cell carcinoma, squamous cell carcinoma, and cutaneous melanoma in skin of color patients. Dermatol Clin 2019; 37 (04) 519-526
  • 8 Fine J-D, Johnson LB, Weiner M, Li KP, Suchindran C, Suchindran C. Epidermolysis bullosa and the risk of life-threatening cancers: the National EB Registry experience, 1986-2006. J Am Acad Dermatol 2009; 60 (02) 203-211
  • 9 Cianfarani F, Zambruno G, Castiglia D, Odorisio T. Pathomechanisms of altered wound healing in recessive dystrophic epidermolysis bullosa. Am J Pathol 2017; 187 (07) 1445-1453
  • 10 Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008; 214 (02) 199-210
  • 11 Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 2012; 18 (07) 1028-1040
  • 12 Condorelli AG, Dellambra E, Logli E, Zambruno G, Castiglia D. Epidermolysis bullosa-associated squamous cell carcinoma: from pathogenesis to therapeutic perspectives; extracellular matrix-mediated regulation of cancer stem cells and chemoresistance. Int J Mol Sci 2019; 20 (22) 5707
  • 13 Odorisio T, Di Salvio M, Orecchia A. et al. Monozygotic twins discordant for recessive dystrophic epidermolysis bullosa phenotype highlight the role of TGF-β signalling in modifying disease severity. Hum Mol Genet 2014; 23 (15) 3907-3922
  • 14 Petrof G, Abdul-Wahab A, Proudfoot L, Pramanik R, Mellerio JE, McGrath JA. Serum levels of high mobility group box 1 correlate with disease severity in recessive dystrophic epidermolysis bullosa. Exp Dermatol 2013; 22 (06) 433-435
  • 15 Nyström A, Velati D, Mittapalli VR, Fritsch A, Kern JS, Bruckner-Tuderman L. Collagen VII plays a dual role in wound healing. J Clin Invest 2013; 123 (08) 3498-3509
  • 16 Akasaka E, Kleiser S, Sengle G, Bruckner-Tuderman L, Nyström A. Diversity of mechanisms underlying latent TGF-β activation in recessive dystrophic epidermolysis bullosa. J Invest Dermatol 2021; 141 (06) 1450-1460.e9
  • 17 Küttner V, Mack C, Rigbolt KT. et al. Global remodelling of cellular microenvironment due to loss of collagen VII. Mol Syst Biol 2013; 9: 657
  • 18 Fritsch A, Loeckermann S, Kern JS. et al. A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy. J Clin Invest 2008; 118 (05) 1669-1679
  • 19 Vanden Oever M, Muldoon D, Mathews W, McElmurry R, Tolar J. miR-29 regulates type VII collagen in recessive dystrophic epidermolysis bullosa. J Invest Dermatol 2016; 136 (10) 2013-2021
  • 20 Ng Y-Z, Pourreyron C, Salas-Alanis JC. et al. Fibroblast-derived dermal matrix drives development of aggressive cutaneous squamous cell carcinoma in patients with recessive dystrophic epidermolysis bullosa. Cancer Res 2012; 72 (14) 3522-3534
  • 21 Liao Y, Ivanova L, Zhu H. et al. Cord blood-derived stem cells suppress fibrosis and may prevent malignant progression in recessive dystrophic epidermolysis bullosa. Stem Cells 2018; 36 (12) 1839-1850
  • 22 Hoste E, Arwert EN, Lal R. et al. Innate sensing of microbial products promotes wound-induced skin cancer. Nat Commun 2015; 6: 5932
  • 23 Thriene K, Grüning BA, Bornert O. et al. Combinatorial omics analysis reveals perturbed lysosomal homeostasis in collagen VII-deficient keratinocytes. Mol Cell Proteomics 2018; 17 (04) 565-579
  • 24 Martins VL, Caley MP, Moore K. et al. Suppression of TGFβ and angiogenesis by type VII collagen in cutaneous SCC. J Natl Cancer Inst 2015; 108 (01) 293
  • 25 Martins VL, Vyas JJ, Chen M. et al. Increased invasive behaviour in cutaneous squamous cell carcinoma with loss of basement-membrane type VII collagen. J Cell Sci 2009; 122 (Pt 11): 1788-1799
  • 26 Arbiser JL, Fan CY, Su X. et al. Involvement of p53 and p16 tumor suppressor genes in recessive dystrophic epidermolysis bullosa-associated squamous cell carcinoma. J Invest Dermatol 2004; 123 (04) 788-790
  • 27 Breitenbach JS, Rinnerthaler M, Trost A. et al. Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa resemble skin aging. Aging (Albany NY) 2015; 7 (06) 389-411
  • 28 Cancer Society. Cancer Facts e Figures 2004. Atlanta: American Cancer Society; 2004
  • 29 Knaup J, Gruber C, Krammer B, Ziegler V, Bauer J, Verwanger T. TGFβ-signaling in squamous cell carcinoma occurring in recessive dystrophic epidermolysis bullosa. Anal Cell Pathol (Amst) 2011; 34 (06) 339-353
  • 30 Mittapalli VR, Madl J, Löffek S. et al. Injury-driven stiffening of the dermis expedites skin carcinoma progression. Cancer Res 2016; 76 (04) 940-951
  • 31 Brandling-Bennett HA, Morel KD. Common wound colonizers in patients with epidermolysis bullosa. Pediatr Dermatol 2010; 27 (01) 25-28
  • 32 Andersson U, Yang H, Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin Immunol 2018; 38: 40-48
  • 33 Diener KR, Al-Dasooqi N, Lousberg EL, Hayball JD. The multifunctional alarmin HMGB1 with roles in the pathophysiology of sepsis and cancer. Immunol Cell Biol 2013; 91 (07) 443-450
  • 34 Yuan S, Liu Z, Xu Z, Liu J, Zhang J. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol 2020; 13 (01) 91
  • 35 Livesey KM, Kang R, Zeh III HJ, Lotze MT, Tang D. Direct molecular interactions between HMGB1 and TP53 in colorectal cancer. Autophagy 2012; 8 (05) 846-848
  • 36 Mardente S, Mari E, Consorti F. et al. HMGB1 induces the overexpression of miR-222 and miR-221 and increases growth and motility in papillary thyroid cancer cells. Oncol Rep 2012; 28 (06) 2285-2289
  • 37 Ebens CL. Deconstructing progressive inflammatory fibrosis in recessive dystrophic epidermolysis bullosa. EMBO Mol Med 2021; 13 (10) e14864
  • 38 Bernasconi R, Thriene K, Romero-Fernández E. et al. Pro-inflammatory immunity supports fibrosis advancement in epidermolysis bullosa: intervention with Ang-(1-7). EMBO Mol Med 2021; 13 (10) e14392
  • 39 Castelo B, Viñal D, Maseda R. et al. Epidemiology and natural history of cutaneous squamous cell carcinoma in recessive dystrophic epidermolysis bullosa patients: 20 years' experience of a reference centre in Spain. Clin Transl Oncol 2019; 21 (11) 1573-1577
  • 40 Kim M, Li M, Intong-Wheeler LRA, Tran K, Marucci D, Murrell DF. Epidemiology and outcome of squamous cell carcinoma in epidermolysis bullosa in Australia and New Zealand. Acta Derm Venereol 2018; 98 (01) 70-76
  • 41 Robertson SJ, Orrin E, Lakhan MK. et al. Cutaneous squamous cell carcinoma in epidermolysis bullosa: a 28-year retrospective study. Acta Derm Venereol 2021; 101 (08) adv00523